Abstract
In smart manufacturing, people are facing an increasing amount of industrial data derived from various digitalized and connected sources in all kinds of formats. Analyzing and utilizing the data can support informed decision-making at different stages of the entire manufacturing life cycle. In recent years, visualization, as an important technology for understanding large and complex data, has been frequently introduced for industrial data analysis, empowering people with insights for process innovation and efficiency improvement. In this paper, we present a literature review of the visualization technologies specifically tailored for smart manufacturing applications. We propose a taxonomy to categorize the existing research based on application scenarios and industry sectors. We also introduce some concrete examples of applied research projects from different phases of the manufacturing life cycle and discuss the application features of several representative industries. Finally, we identify existing technical challenges and point out directions for future research.
Graphical abstract








Similar content being viewed by others
References
Alsallakh B, Ren L (2017) Powerset: a comprehensive visualization of set intersections. IEEE Trans Vis Comput Gr 23(1):361–370. https://doi.org/10.1109/TVCG.2016.2598496
Amirkhanov A, Heinzl C, Reiter M et al (2011) Projection-based metal-artifact reduction for industrial 3D X-ray computed tomography. IEEE Trans Vis Comput Gr 17(12):2193–2202. https://doi.org/10.1109/TVCG.2011.228
Amirkhanov A, Fröhler B, Kastner J et al (2014) InSpectr: multi-modal exploration, visualization, and analysis of spectral data. Comput Gr Forum 33(3):91–100. https://doi.org/10.1111/cgf.12365
Amirkhanov A, Amirkhanov A, Salaberger D et al (2016) Visual analysis of defects in glass fiber reinforced polymers for 4DCT interrupted in situ tests. Comput Gr Forum 35(3):201–210. https://doi.org/10.1111/cgf.12896
Angelelli P, Hauser H (2011) Straightening tubular flow for side-by-side visualization. IEEE Trans Vis Comput Gr 17(12):2063–2070. https://doi.org/10.1109/TVCG.2011.235
Arbesser C, Spechtenhauser F, Mühlbacher T et al (2017) Visplause: visual data quality assessment of many time series using plausibility checks. IEEE Trans Vis Comput Gr 23(1):641–650. https://doi.org/10.1109/TVCG.2016.2598592
Beketayev K, Weber GH, Haranczyk M et al (2011) Topology-based visualization of transformation pathways in complex chemical systems. Comput Gr Forum 30(3):663–672. https://doi.org/10.1111/j.1467-8659.2011.01915.x
Billinghurst M, Kato H (1999) Collaborative mixed reality. In: Proceedings of the first international symposium on mixed reality, pp 261–284. https://doi.org/10.1007/978-3-642-87512-0_15
Boukhelifa N, Cancino W, Bezerianos A et al (2013) Evolutionary visual exploration: evaluation with expert users. Comput Gr Forum 32(3):31–40. https://doi.org/10.1111/cgf.12090
Chen X, Clark J (2013) Interactive three-dimensional geovisualization of space–time access to food. Appl Geogr 43:81–86. https://doi.org/10.1016/j.apgeog.2013.05.012
Chen Y, Du X, Yuan X (2017a) Ordered small multiple treemaps for visualizing time-varying hierarchical pesticide residue data. Vis Comput 33(6–8):1073–1084. https://doi.org/10.1007/s00371-017-1373-x
Chen W, Huang Z, Wu F et al (2017b) VAUD: a visual analysis approach for exploring spatio-temporal urban data. IEEE Trans Vis Comput Gr. https://doi.org/10.1109/tvcg.2017.2758362
Chen Y, Xu P, Ren L (2018) Sequence synopsis: optimize visual summary of temporal event data. IEEE Trans Vis Comput Gr 24(1):45–55. https://doi.org/10.1109/TVCG.2017.2745083
Choo J, Lee C, Reddy CK et al (2013) Utopian: user-driven topic modeling based on interactive nonnegative matrix factorization. IEEE Trans Vis Comput Gr 19(12):1992–2001. https://doi.org/10.1109/TVCG.2013.212
Coffey D, Lin C-L, Erdman AG et al (2013) Design by dragging: an interface for creative forward and inverse design with simulation ensembles. IEEE Trans Vis Comput Gr 19(12):2783–2791. https://doi.org/10.1109/TVCG.2013.147
Dangelmaier W, Fischer M, Gausemeier J et al (2005) Virtual and augmented reality support for discrete manufacturing system simulation. Comput Ind 56(4):371–383. https://doi.org/10.1016/j.compind.2005.01.007
Davis J, Edgar T, Porter J et al (2012) Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng 47(12):145–156. https://doi.org/10.1016/j.compchemeng.2012.06.037
Drath R, Horch A (2014) Industrie 4.0: Hit or hype?[industry forum]. IEEE Ind Electron Mag 8(2):56–58. https://doi.org/10.1109/MIE.2014.2312079
Dujin A, Geissler C, Horstkötter D (2014) “Think Act Industry 4.0. The new industrial revolution: How Europe will succeed. Ronald Berger Strategy Consultants GmbH, Munich, p 24
Dutta S, Chen C-M, Heinlein G et al (2017) In situ distribution guided analysis and visualization of transonic jet engine simulations. IEEE Trans Vis Comput Gr 23(1):811–820. https://doi.org/10.1109/TVCG.2016.2598604
Dutta S, Shen HW, Chen JP (2018) In situ prediction driven feature analysis in jet engine simulations. In: Proceedings of the IEEE pacific visualization symposium (PacificVis), Kobe, Japan
Espíndola DB, Fumagalli L, Garetti M et al (2013) A model-based approach for data integration to improve maintenance management by mixed reality. Comput Ind 64(4):376–391. https://doi.org/10.1016/j.compind.2013.01.002
Govindarajan UH, Trappey AJ, Trappey CV (2018) Immersive technology for human-centric cyberphysical systems in complex manufacturing processes: a comprehensive overview of the global patent profile using collective intelligence. Complexity 2018:17
Guo S, Xu K, Zhao R et al (2018) EventThread: visual summarization and stage analysis of event sequence data. IEEE Trans Vis Comput Gr 24(1):56–65. https://doi.org/10.1109/TVCG.2017.2745320
Höllt T, Beyer J, Gschwantner F et al (2011) Interactive seismic interpretation with piecewise global energy minimization. In: IEEE pacific visualization symposium (PacificVis), Hong Kong, China, pp 59–66. https://doi.org/10.1109/PacificVis.2011.5742373
Höllt T, Magdy A, Chen G et al (2013) Visual analysis of uncertainties in ocean forecasts for planning and operation of off-shore structures. In: IEEE pacific visualization symposium (PacificVis), Sydney, NSW, Australia, pp 185–192. https://doi.org/10.1109/pacificvis.2013.6596144
Huettenberger L, Feige N, Ebert A et al (2015) Application of Pareto sets in quality control of series production in car manufacturing. In: IEEE pacific visualization symposium (PacificVis), Hangzhou, China, pp 135–139. https://doi.org/10.1109/PacificVis.2015.7156369
Ivson P, Nascimento D, Celes W et al (2017) Cascade: a novel 4D visualization system for virtual construction planning. IEEE Trans Vis Comput Gr 24(1):687–697. https://doi.org/10.1109/TVCG.2017.2745105
Jo J, Huh J, Park J et al (2014) LiveGantt: interactively visualizing a large manufacturing schedule. IEEE Trans Vis Comput Gr 20(12):2329–2338. https://doi.org/10.1109/TVCG.2014.2346454
Kehrer J, Hauser H (2013) Visualization and visual analysis of multifaceted scientific data: a survey. IEEE Trans Vis Comput Gr 19(3):495–513. https://doi.org/10.1109/TVCG.2012.110
Kehrer J, Piringer H, Berger W et al (2013) A model for structure-based comparison of many categories in small-multiple displays. IEEE Trans Vis Comput Gr 19(12):2287–2296. https://doi.org/10.1109/TVCG.2013.122
Kratz A, Schoeneich M, Zobel V et al (2014) Tensor visualization driven mechanical component design. In: IEEE pacific visualization symposium (PacificVis), Yokohama, Japan, pp 145–152. https://doi.org/10.1109/pacificvis.2014.51
Lee J, Han S, Yang J (2011) Construction of a computer-simulated mixed reality environment for virtual factory layout planning. Comput Ind 62(1):86–98. https://doi.org/10.1016/j.compind.2010.07.001
Lee J, Kao H-A, Yang S (2014) Service innovation and smart analytics for industry 4.0 and big data environment. Proc Cirp 16:3–8. https://doi.org/10.1016/j.procir.2014.02.001
Li D, Mei H, Shen Y et al (2018) ECharts: a declarative framework for rapid construction of web-based visualization. Vis Inform 2(2):136–146. https://doi.org/10.1016/j.visinf.2018.04.011
Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. Wiley, New York
Liu S, Cui W, Wu Y et al (2014) A survey on information visualization: recent advances and challenges. Vis Comput 30(12):1373–1393. https://doi.org/10.1007/s00371-013-0892-3
Liu M, Shi J, Li Z et al (2017) Towards better analysis of deep convolutional neural networks. IEEE Trans Vis Comput Gr 23(1):91–100. https://doi.org/10.1109/TVCG.2016.2598831
Maljovec D, Wang B, Rosen P et al (2016) Rethinking sensitivity analysis of nuclear simulations with topology. In: IEEE pacific visualization symposium (PacificVis), Taipei, Taiwan, pp 64–71. https://doi.org/10.1109/PacificVis.2016.7465252
Matković K, Gračanin D, Splechtna R et al (2014) Visual analytics for complex engineering systems: hybrid visual steering of simulation ensembles. IEEE Trans Vis Comput Gr 20(12):1803–1812. https://doi.org/10.1109/TVCG.2014.2346744
Merzkirch W (2003) Flow visualization. Encycl Phys Sci Technol 28(11):23–29
Millette A, McGuffin MJ (2016) DualCAD: integrating augmented reality with a desktop GUI and smartphone interaction. In: International symposium on mixed and augmented reality (ISMAR-Adjunct), Merida, Mexico, pp 21–26. https://doi.org/10.1109/ismar-adjunct.2016.0030
Paelke V (2014) Augmented reality in the smart factory: supporting workers in an industry 4.0. environment. In: IEEE emerging technology and factory automation (ETFA), Barcelona, Spain, pp 1–4. https://doi.org/10.1109/etfa.2014.7005252
Pajer S, Streit M, Torsney-Weir T et al (2017) Weightlifter: visual weight space exploration for multi-criteria decision making. IEEE Trans Vis Comput Gr 23(1):611–620. https://doi.org/10.1109/TVCG.2016.2598589
Peng G, Hou X, Gao J et al (2012) A visualization system for integrating maintainability design and evaluation at product design stage. Int J Adv Manuf Technol 61(1–4):269–284. https://doi.org/10.1007/s00170-011-3702-y
Perer A, Guy I, Uziel E et al (2011) Visual social network analytics for relationship discovery in the enterprise. In: IEEE conference on visual analytics science and technology (VAST), Providence, RI, USA, pp 71–79. https://doi.org/10.1109/vast.2011.6102443
Post T, Ilsen R, Hamann B et al (2017) User-guided visual analysis of cyber-physical production systems. J Comput Inf Sci Eng. https://doi.org/10.1115/1.4034872
Radoš S, Splechtna R, Matković K (2016) Towards quantitative visual analytics with structured brushing and linked statistics. Comput Gr Forum 35(3):251–260. https://doi.org/10.1111/cgf.12901
Reh A, Plank B, Kastner J et al (2012) Porosity maps–interactive exploration and visual analysis of porosity in carbon fiber reinforced polymers. Comput Gr Forum 31(3):1185–1194. https://doi.org/10.1111/j.1467-8659.2012.03111.x
Reh A, Gusenbauer C, Kastner J et al (2013) MObjects—a novel method for the visualization and interactive exploration of defects in industrial XCT data. IEEE Trans Vis Comput Gr 19(12):2906–2915. https://doi.org/10.1109/TVCG.2013.177
Sahaf Z, Marbouti M, Mota RC et al (2017) PipeVis: interactive visual exploration of pipeline incident data. In: Proceedings of the Eurographics Association (EuroVA). https://doi.org/10.2312/eurova.20171116
Sarcar M, Rao KM, Narayan KL (2008) Computer aided design and manufacturing. PHI Learning Pvt. Ltd., New York
Sarkar A, Singh RP (2004) Air impingement technology for food processing: visualization studies. LWT Food Sci Technol 37(8):873–879. https://doi.org/10.1016/j.lwt.2004.04.005
Sedlmair M, Isenberg P, Baur D et al (2011) Cardiogram: visual analytics for automotive engineers. In: Proceedings of the SIGCHI conference on human factors in computing systems, Vancouver, BC, Canada, pp 1727–1736. https://doi.org/10.1145/1978942.1979194
Shi R, Yang M, Zhao Y et al (2016) A matrix-based visualization system for network traffic forensics. IEEE Syst J 10(4):1350–1360. https://doi.org/10.1109/JSYST.2014.2358997
Shi Y, Bryan C, Bhamidipati S et al (2018) MeetingVis: visual narratives to assist in recalling meeting context and content. IEEE Trans Vis Comput Gr 24(6):1918–1929. https://doi.org/10.1109/TVCG.2018.2816203
Shiravi H, Shiravi A, Ghorbani AA (2012) A survey of visualization systems for network security. IEEE Trans Vis Comput Gr 18(8):1313–1329. https://doi.org/10.1109/TVCG.2011.144
Splechtna R, Matković K, Gračanin D et al (2015) Interactive visual steering of hierarchical simulation ensembles. In: IEEE conference on visual analytics science and technology (VAST), Chicago, IL, USA, pp 89–96. https://doi.org/10.1109/vast.2015.7347635
Sun G-D, Wu Y-C, Liang R-H et al (2013) A survey of visual analytics techniques and applications: state-of-the-art research and future challenges. J Comput Sci Technol 28(5):852–867. https://doi.org/10.1007/s11390-013-1383-8
Takeshima Y, Fujishiro I, Takahashi S et al (2013) A topologically-enhanced juxtaposition tool for hybrid wind tunnel. In: IEEE pacific visualization symposium (PacificVis), Sydney, NSW, Australia, pp 113–120. https://doi.org/10.1109/pacificvis.2013.6596135
Weissenbock J, Amirkhanov A, Li W et al (2014) Fiberscout: an interactive tool for exploring and analyzing fiber reinforced polymers. In: IEEE pacific visualization symposium (PacificVis), Yokohama, Japan, pp 153–160. https://doi.org/10.1109/pacificvis.2014.52
Wörner M, Ertl T (2013) Simulation-based visual layout planning in advanced manufacturing. In: 46th Hawaii international conference on system sciences (HICSS), Wailea, Maui, HI, USA, pp 1532–1541. https://doi.org/10.1109/hicss.2013.482
Wörner M, Ertl T, Miksch S et al (2011) Visual analysis of advanced manufacturing simulations. In: Proceedings of the Eurographics Association (EuroVA). https://doi.org/10.2312/pe/eurovast/eurova11/029-032
Wu PY (2001) Visualizing capacity and load in production planning. In: Proceedings of the fifth international conference on information visualization, pp 357–360. https://doi.org/10.1109/iv.2001.942082
Wu Y, Cao N, Gotz D et al (2016) A survey on visual analytics of social media data. IEEE Trans Multimed 18(11):2135–2148. https://doi.org/10.1109/TMM.2016.2614220
Wu W, Zheng Y, Chen K et al (2018) A visual analytics approach for equipment condition monitoring in smart factories of process industry. In: Proceedings of the IEEE pacific visualization symposium (PacificVis), Kobe, Japan
Xia J, Chen W, Hou Y et al (2016) DimScanner: a relation-based visual exploration approach towards data dimension inspection. In: Proceedings of the IEEE conference on visual analytics science and technology (VAST), Baltimore, MD, USA. https://doi.org/10.1109/vast.2016.7883514
Xia J, Ye F, Chen W et al (2018) LDSScanner: exploratory analysis of low-dimensional structures in high-dimensional datasets. IEEE Trans Vis Comput Gr 24(1):236–245. https://doi.org/10.1109/TVCG.2017.2744098
Xu P, Mei H, Ren L et al (2017) Vidx: visual diagnostics of assembly line performance in smart factories. IEEE Trans Vis Comput Gr 23(1):291–300. https://doi.org/10.1109/TVCG.2016.2598664
Xue J, Zhao G, Xiao W (2016) Efficient GPU out-of-core visualization of large-scale CAD models with voxel representations. Adv Eng Softw 99:73–80. https://doi.org/10.1016/j.advengsoft.2016.05.006
Yin S, Ding SX, Xie X et al (2014) A review on basic data-driven approaches for industrial process monitoring. IEEE Trans Ind Electron 61(11):6418–6428. https://doi.org/10.1109/TIE.2014.2301773
Zhao Y, Liang X, Fan X et al (2014) MVSec: multi-perspective and deductive visual analytics on heterogeneous network security data. J Vis 17(3):181–196. https://doi.org/10.1007/s12650-014-0213-6
Zhao Y, She Y, Chen W et al (2018) EOD edge sampling for visualizing dynamic network via massive sequence view. IEEE Access 6(1):53006–53018. https://doi.org/10.1109/ACCESS.2018.2870684
Zhao Y, Luo F, Chen M et al (2019) Evaluating multi-dimensional visualizations for understanding fuzzy clusters. IEEE Trans Vis Comput Gr 25(1):1–10. https://doi.org/10.1109/TVCG.2018.2865020
Zhong Y, Shirinzadeh B (2008) Virtual factory for manufacturing process visualization. Complex Int 12:1–22
Zhou CQ (2011) Visualizing the future in steel manufacturing. Iron Steel Technol 8(1):37–50
Zhou C, Wang J, Tang G et al (2016) Integration of advanced simulation and visualization for manufacturing process optimization. J Miner Met Mater Soc 68(5):1363–1369. https://doi.org/10.1007/s11837-016-1892-3
Zhou F, Lin X, Luo X et al (2017) Visually enhanced situation awareness for complex manufacturing facility monitoring in smart factories. J Vis Lang Comput 44:58–69. https://doi.org/10.1016/j.jvlc.2017.11.004
Acknowledgements
The research is supported by the National Key Research and Development Program of China No. 2018YFB1004001, the National Science Foundation of China No. 61572057, 61672538 and 61872388, the Natural Science Foundation of Hunan Province No. 2017JJ3414, Anhui Province Key Laboratory of Industry Safety and Emergency Technology No. ISET201810 and the Fundamental Research Funds for the Central Universities of Central South University No. 2018zzts575.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Zhou, F., Lin, X., Liu, C. et al. A survey of visualization for smart manufacturing. J Vis 22, 419–435 (2019). https://doi.org/10.1007/s12650-018-0530-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12650-018-0530-2