Abstract
Table tennis matches consist of many stroke sequences where two players hit the ball interactively and consecutively until one fails to hit the ball. Players usually employ many complicated playing techniques at each stroke in highly antagonistic, variable, and flexible matches. In-depth comparative analyses of players’ stroke sequences are necessary to obtain insights into the technical playing patterns of players. Experts commonly use spreadsheets to browse and compare strokes one by one, and this process is tedious and prone to errors. Statistical analyses are limited to well-defined patterns (e.g., value distribution and relation significance) and fail to present complex and peculiar patterns. We collaborated with experts to dig out soft patterns of stroke sequences and proposed a novel interactive visualization system to present and compare the patterns. The main visualization challenge is to display the multivariate stroke sequence and the spatial variation patterns. We designed a glyph-based pattern view to solve the challenge. These comprehensible visualizations and coordinated views in the system allow efficient comparative analysis of stroke sequence patterns and are highly commended by domain experts, who have identified several new and interesting patterns using the system. We demonstrated the effectiveness and usability of the visualization system through case studies with table tennis experts.
Graphic abstract
.
![](http://media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs12650-021-00772-0/MediaObjects/12650_2021_772_Figa_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12650-021-00772-0/MediaObjects/12650_2021_772_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12650-021-00772-0/MediaObjects/12650_2021_772_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12650-021-00772-0/MediaObjects/12650_2021_772_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12650-021-00772-0/MediaObjects/12650_2021_772_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12650-021-00772-0/MediaObjects/12650_2021_772_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12650-021-00772-0/MediaObjects/12650_2021_772_Fig6_HTML.png)
Similar content being viewed by others
References
Alexander EC, Gleicher M (2016) Task-driven comparison of topic models. IEEE Trans Vis Comput Graphi 22(1):320–329
Andrienko N, Andrienko G, Miksch S, Schumann H, Wrobel S (2021) A theoretical model for pattern discovery in visual analytics. Vis Inf 5(1):23–42
Cappers BC, van Wijk JJ (2017) Exploring multivariate event sequences using rules, aggregations, and selections. IEEE Trans Vis Comput Graph 24(1):532–541
Chen H, Zhang S, Chen W, Mei H, Zhang J, Mercer A, Liang R, Qu H (2015) Uncertainty-aware multidimensional ensemble data visualization and exploration. IEEE Trans Vis Comput Graph 21(9):1072–1086
Chen W, Lao T, Xia J, Huang X, Zhu B, Hu W, Guan H (2016) GameFlow: Narrative visualization of NBA basketball games. IEEE Trans Multimedia 18(11):2247–2256
Chen Y, Xu P, Ren L (2018) Sequence synopsis: optimize visual summary of temporal event data. IEEE Trans Vis Comput Graph 24(1):45–55
Chen K, Wang Y, Yu M, Shen HW, Yu X, Shan G (2021) ConfVisExplorer: a literature-based visual analysis system for conference comparison. J Vis 24(2):381–395
Chen R, Shu X, Chen J, Weng D, Tang J, Fu S, Wu Y (2021) Nebula: A coordinating grammar of graphics. IEEE Trans Vis Comput Graph
Chen Z, Ye S, Chu X, Xia H, Zhang H, Qu H, Wu Y (2022) Augmenting sports videos with viscommentator. To appear in IEEE Trans Vis Comput Graph 28(1)
Chu X, Xie X, Ye S, Lu H, Xiao H, Yuan Z, Chen Z, Zhang H, Wu Y (2022) TIVEE: Visual exploration and explanation of badminton tactics in immersive visualizations. To appear IEEE Trans Vis Comput Graph 28(1)
Du F, Shneiderman B, Plaisant C, Malik S, Perer A (2017) Coping with volume and variety in temporal event sequences: Strategies for sharpening analytic focus. IEEE Trans Vis Comput Graph 23(6):1636–1649
Du F, Plaisant C, Spring N, Shneiderman B (2016) EventAction: Visual analytics for temporal event sequence recommendation. In: Proceedings of IEEE Conference on Visual Analytics Science and Technology, pp. 61–70
Filipov V, Schetinger V, Raminger K, Soursos N, Zapke S, Miksch S (2021) Gone full circle: a radial approach to visualize event-based networks in digital humanities. Vis Inf 5(1):45–60
Fuchs J, Isenberg P, Bezerianos A, Keim DA (2017) A systematic review of experimental studies on data glyphs. IEEE Trans Vis Comput Graph 23(7):1863–1879
Gleicher M (2018) Considerations for visualizing comparison. IEEE Trans Vis Comput Graph 24(1):413–423
Gleicher M, Albers D, Walker R, Jusufi I, Hansen CD, Roberts JC (2011) Visual comparison for information visualization. Inf Vis 10(4):289–309
Glueck M, Naeini MP, Doshi-Velez F, Chevalier F, Khan A, Wigdor D, Brudno M (2018) PhenoLines: phenotype comparison visualizations for disease subtyping via topic models. IEEE Trans Vis Comput Graph 24(1):371–381
Gotz D (2016) Soft patterns: Moving beyond explicit sequential patterns during visual analysis of longitudinal event datasets. In: Proceedings of the IEEE VIS Workshop on Temporal & Sequential Event Analysis
Guo S, Xu K, Zhao R, Gotz D, Zha H, Cao N (2018) EventThread: visual summarization and stage analysis of event sequence data. IEEE Trans Vis Comput Graph 24(1):56–65
Guo R, Fujiwara T, Li Y, Lima KM, Sen S, Tran NK, Ma KL (2020) Comparative visual analytics for assessing medical records with sequence embedding. Vis Inf 4(2):72–85
He W, Wang J, Guo H, Shen HW, Peterka T (2020) CECAV-DNN: collective ensemble comparison and visualization using deep neural networks. Vis Inf 4(2):109–121
Jin Z, Cao N, Shi Y, Wu W, Wu Y (2021) EcoLens: visual analysis of ecological regions in urban contexts using traffic data. J Vis 24(2):349–364
Jin Z, Chen N, Shi Y, Qian W, Xu M, Cao N (2021) TrammelGraph: visual graph abstraction for comparison. J Vis 24(2):365–379
Kehrer J, Hauser H (2013) Visualization and visual analysis of multifaceted scientific data: a survey. IEEE Trans Vis Comput Graph 19(3):495–513
Lames M, McGarry T (2007) On the search for reliable performance indicators in game sports. Int J Performance Anal Sport 7(1):62–79
Legg PA, Maguire E, Walton SJ, Chen M (2017) Glyph visualization: a fail-safe design scheme based on quasi-hamming distances. IEEE Comput Graph Appl 37(2):31–41
Li Y, Fujiwara T, Choi YK, Kim KK, Ma KL (2020) A visual analytics system for multi-model comparison on clinical data predictions. Vis Inf 4(2):122–131
Liu Z, Wang Y, Dontcheva M, Hoffman M, Walker S, Wilson A (2017) Patterns and sequences: interactive exploration of clickstreams to understand common visitor paths. IEEE Trans Vis Comput Graph 23(1):321–330
Loh TC, Krasilshchikov O (2015) Competition performance variables differences in elite and u-21 international men singles table tennis players. J Phys Edu Sport 15(4):829
Mei H, Chen W, Wei Y, Hu Y, Zhou S, Lin B, Zhao Y, Xia J (2019) Rsatree: Distribution-aware data representation of large-scale tabular datasets for flexible visual query. IEEE Trans Vis Comput Graph 26(1):1161–1171
Munzner T (2014) Visualization analysis and design. A.K Peters visualization series. A K Peters, Natick
Pfeiffer M, Zhang H, Hohmann A (2010) A markov chain model of elite table tennis competition. Int J Sports Sci Coach 5(2):205–222
Polk T, Yang J, Hu Y, Zhao Y (2014) TenniVis: visualization for tennis match analysis. IEEE Trans Vis Comput Graph 20(12):2339–2348
Polk T, Jäckle D, Häußler J, Yang J (2020) CourtTime: generating actionable insights into tennis matches using visual analytics. IEEE Trans Vis Comput Graph 26(1):397–406
Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65
Sedlmair M, Meyer MD, Munzner T (2012) Design study methodology: reflections from the trenches and the stacks. IEEE Trans Vis Comput Graph 18(12):2431–2440
Shi D, Xu X, Sun F, Shi Y, Cao N (2020) Calliope: automatic visual data story generation from a spreadsheet. IEEE Trans Vis Comput Graph 27(2):453–463
Shu X, Wu J, Wu X, Liang H, Cui W, Wu Y, Qu H (2021) DancingWords: exploring animated word clouds to tell stories. J Vis 24(1):85–100
Table tennis. https://en.wikipedia.org/wiki/Table_tennis (2018)
Tang T, Tang J, Hong J, Yu L, Ren P, Wu Y (2020) Design guidelines for augmenting short-form videos using animated data visualizations. J Vis 23(4):707–720
Types of strokes. https://en.wikipedia.org/wiki/Table_tennis#Types_of_strokes (2018)
von Luxburg U (2007) A tutorial on spectral clustering. Statist Comput 17(4):395–416
Wang J, Zhao K, Deng D, Cao A, Xie X, Zhou Z, Zhang H, Wu Y (2020) Tac-Simur: tactic-based simulative visual analytics of table tennis. IEEE Trans Vis Comput Graph 26(1):407–417
Wang J, Wu J, Cao A, Zhou Z, Zhang H, Wu Y (2021) Tac-Miner: visual tactic mining for multiple table tennis matches. IEEE Trans Vis Comput Graph 27(6):2770–2782
Wang X, Bryan CJ, Li Y, Pan R, Liu Y, Chen W, Ma KL (2020) Umbra: A visual analysis approach for defense construction against inference attacks on sensitive information. IEEE Trans Vis Comput Graph
Wang X, Chen W, Xia J, Chen Z, Xu D, Wu X, Xu M, Schreck T (2020) ConceptExplorer: Visual analysis of concept drifts in multi-source time-series data. In: Proceedings of IEEE Conference on Visual Analytics Science and Technology, pp. 1–11
Weng D, Zheng C, Deng Z, Ma M, Bao J, Zheng Y, Xu M, Wu Y (2021) Towards better bus networks: a visual analytics approach. IEEE Trans Vis Comput Graph 27(2):817–827
Wenninger S, Lames M (2016) Performance analysis in table tennis-stochastic simulation by numerical derivation. Int J Comput Sci Sport 15(1):22–36
Wongsuphasawat K, Guerra Gómez JA, Plaisant C, Wang TD, Taieb-Maimon M, Shneiderman B (2011) LifeFlow: Visualizing an overview of event sequences. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp. 1747–1756
Wu Y, Lan J, Shu X, Ji C, Zhao K, Wang J, Zhang H (2018) iTTVis: interactive visualization of table tennis data. IEEE Trans Vis Comput Graph 24(1):709–718
Wu Y, Xie X, Wang J, Deng D, Liang H, Zhang H, Cheng S, Chen W (2019) ForVizor: visualizing spatio-temporal team formations in soccer. IEEE Trans Vis Comput Graph 25(1):65–75
Wu Y, Weng D, Deng Z, Bao J, Xu M, Wang Z, Zheng Y, Ding Z, Chen W (2020) Towards better detection and analysis of massive spatiotemporal co-occurrence patterns. IEEE Trans Intell Transp Syst 22(6):3387–3402
Wu J, Guo Z, Wang Z, Xu Q, Wu Y (2020) Visual analytics of multivariate event sequence data in racquet sports. In: Proceedings of IEEE Conference on Visual Analytics Science and Technology, pp. 36–47
Wu J, Liu D, Guo Z, Xu Q, Wu Y (2022) TacticFlow: Visual analytics of ever-changing tactics in racket sports. To appear in IEEE Trans Vis Comput Graph 28(1)
Xie X, Wang J, Liang H, Deng D, Cheng S, Zhang H, Chen W, Wu Y (2021) PassVizor: toward better understanding of the dynamics of soccer passes. IEEE Trans Vis Comput Graph 27(2):1322–1331
Ye S, Chen Z, Chu X, Wang Y, Fu S, Shen L, Zhou K, Wu Y (2021) ShuttleSpace: exploring and analyzing movement trajectory in immersive visualization. IEEE Trans Vis Comput Graph 27(2):860–869
Zhao Y, Luo X, Lin X, Wang H, Kui X, Zhou F, Wang J, Chen Y, Chen W (2019) Visual analytics for electromagnetic situation awareness in radio monitoring and management. IEEE Trans Vis Comput Graph 26(1):590–600
Zhao Y, Jiang H, Qin Y, Xie H, Wu Y, Liu S, Zhou Z, Xia J, Zhou F et al (2020) Preserving minority structures in graph sampling. IEEE Trans Vis Comput Graph 27(2):1698–1708
Acknowledgements
The work was supported by Zhejiang Provincial Natural Science Foundation (LR18F020001). This project was also funded by the Chinese Table Tennis Association.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lan, J., Wang, J., Shu, X. et al. RallyComparator: visual comparison of the multivariate and spatial stroke sequence in table tennis rally. J Vis 25, 143–158 (2022). https://doi.org/10.1007/s12650-021-00772-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12650-021-00772-0