Skip to main content
Log in

ACMViz: a visual analytics approach to understand DRL-based autonomous control model

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Deep reinforcement learning (DRL) has been widely used in autonomous control due to its superior performance. DRL-based autonomous control model (ACM) aims to train an agent to achieve self-control and learn optimal policy through pre-defined rewards. Despite the super-human performance, ACM is regarded as a black box, and the interpretation of its internal working mechanism remains a challenge to domain experts. In addition, adjusting the reward settings of ACM is also challenging due to the uncertain relationship between rewards setting and strategies. In this paper, we propose ACMViz, a visual analytics system to explore control strategies at different stages and reveal the relationship between rewards and action patterns. Focusing on controlling a lunar lander, ACMViz investigates different landing trajectories and action sequences to interpret the model and control the training. From our visual analytics of the action patterns, we diagnose and improve reward settings for different control targets. Through our case studies with deep learning experts, we validate the effectiveness of ACMViz.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alemzadeh S, Niemann U, Ittermann T, Völzke H, Schneider D, Spiliopoulou M, Bühler K, Preim B (2020) Visual analysis of missing values in longitudinal cohort study data. In: Computer graphics forum, vol 39. Wiley Online Library, pp 63–75

  • Arbesser C, Spechtenhauser F, Mühlbacher T, Piringer H (2016) Visplause: visual data quality assessment of many time series using plausibility checks. IEEE Trans Vis Comput Graph 23(1):641–650

    Article  Google Scholar 

  • Berger M, McDonough K, Seversky LM (2016) cite2vec: citation-driven document exploration via word embeddings. IEEE Trans Vis Comput Graph 23(1):691–700

    Article  Google Scholar 

  • Bezerianos A, Dragicevic P, Fekete JD, Bae J, Watson B (2010) Geneaquilts: a system for exploring large genealogies. IEEE Trans Vis Comput Graph 16(6):1073–1081

    Article  Google Scholar 

  • Bilal A, Jourabloo A, Ye M, Liu X, Ren L (2017) Do convolutional neural networks learn class hierarchy? IEEE Trans Vis Comput Graph 24(1):152–162

    Article  Google Scholar 

  • Blumenschein M, Behrisch M, Schmid S, Butscher S, Wahl DR, Villinger K, Renner B, Reiterer H, Keim DA (2018) Smartexplore: simplifying high-dimensional data analysis through a table-based visual analytics approach. In: 2018 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 36–47

  • Bors C, Gschwandtner T, Miksch S (2019) Capturing and visualizing provenance from data wrangling. IEEE Comput Graph Appl 39(6):61–75

    Article  Google Scholar 

  • Chen C, Yuan J, Lu Y, Liu Y, Su H, Yuan S, Liu S (2020) Oodanalyzer: interactive analysis of out-of-distribution samples. IEEE Trans Vis Comput Graph 27(7):3335–3349

    Article  Google Scholar 

  • Dextras-Romagnino K, Munzner T (2019) Segmentifier: interactive refinement of clickstream data. Comput Graph Forum 38(3):623–634

    Article  Google Scholar 

  • Gotz D, Stavropoulos H (2014) Decisionflow: visual analytics for high-dimensional temporal event sequence data. IEEE Trans Vis Comput Graph 20(12):1783–1792

    Article  Google Scholar 

  • Jaunet T, Vuillemot R, Wolf C (2020) Drlviz: understanding decisions and memory in deep reinforcement learning. Comput Graph Forum 39(3):49–61

    Article  Google Scholar 

  • Li G, Wang J, Shen HW, Chen K, Shan G, Lu Z (2020) Cnnpruner: pruning convolutional neural networks with visual analytics. IEEE Trans Vis Comput Graph 27(2):1364–1373

    Article  Google Scholar 

  • Liu M, Shi J, Cao K, Zhu J, Liu S (2017a) Analyzing the training processes of deep generative models. IEEE Trans Vis Comput Graph 24(1):77–87

    Article  Google Scholar 

  • Liu M, Shi J, Li Z, Li C, Zhu J, Liu S (2017b) Towards better analysis of deep convolutional neural networks. IEEE Trans Vis Comput Graph 23(1):91–100

    Article  Google Scholar 

  • Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, pp 3111–3119

  • Ming Y, Cao S, Zhang R, Li Z, Chen Y, Song Y, Qu H (2017) Understanding hidden memories of recurrent neural networks. In: 2017 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 13–24

  • Perer A, Sun J (2012) Matrixflow: temporal network visual analytics to track symptom evolution during disease progression. In: AMIA annual symposium proceedings, vol 2012, p 716

  • Plaisant C, Milash B, Rose A, Widoff S, Shneiderman B (1996) Lifelines: visualizing personal histories. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp 221–227

  • Wang J, Gou L, Shen HW, Yang H (2018a) Dqnviz: a visual analytics approach to understand deep q-networks. IEEE Trans Vis Comput Graph 25(1):288–298

    Article  Google Scholar 

  • Wang J, Gou L, Yang H, Shen HW (2018b) Ganviz: a visual analytics approach to understand the adversarial game. IEEE Trans Vis Comput Graph 24(6):1905–1917

    Article  Google Scholar 

  • Wang J, Zhang W, Yang H, Yeh CCM, Wang L (2021) Visual analytics for RNN-based deep reinforcement learning. IEEE Trans Vis Comput Graph

  • Wongsuphasawat K, Guerra Gómez JA, Plaisant C, Wang TD, Taieb-Maimon M, Shneiderman B (2011) Lifeflow: visualizing an overview of event sequences. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 1747–1756

  • Xiang S, Ye X, Xia J, Wu J, Chen Y, Liu S (2019) Interactive correction of mislabeled training data. In: 2019 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 57–68

  • Yuan J, Chen C, Yang W, Liu M, Xia J, Liu S (2021) A survey of visual analytics techniques for machine learning. Comput Vis Media 7(1):3–36. https://doi.org/10.1007/s41095-020-0191-7

  • Zhao Y, Luo F, Chen M, Wang Y, Xia J, Zhou F, Wang Y, Chen Y, Chen W (2018) Evaluating multi-dimensional visualizations for understanding fuzzy clusters. IEEE Trans Vis Comput Graph 25(1):12–21

    Article  Google Scholar 

  • Zhao Y, Luo X, Lin X, Wang H, Kui X, Zhou F, Wang J, Chen Y, Chen W (2019) Visual analytics for electromagnetic situation awareness in radio monitoring and management. IEEE Trans Vis Comput Graph 26(1):590–600

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFB0204802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guihua Shan or Beifang Niu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Li, X., Shan, G. et al. ACMViz: a visual analytics approach to understand DRL-based autonomous control model. J Vis 25, 427–442 (2022). https://doi.org/10.1007/s12650-021-00793-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-021-00793-9

Keywords

Navigation