Skip to main content

Advertisement

Log in

Human motion detection using Markov random fields

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose Markov random fields (MRFs) to automatically detect a moving human body through minimizing the joint energy of the MRF for the velocity and relative position of body parts. The relaxation labeling algorithm is employed to find the best body part labeling configuration between MRFs and observed data. We detect a walking motion viewed monocularly based on point features, where some points are from the unoccluded body parts and some belong to the background. The results show that MRFs can detect human motions robustly and accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We denote V(o i |f i  = j) as V(o i |j).

References

  • Song Y, Goncalves L, Perona P (2003) Unsupervised learning of human motion. IEEE Trans Pattern Anal Mach Intell 25(7):1–14

    Google Scholar 

  • Yu Q, Medioni G (2009) Multiple target tracking by spatio-temporal Monte Carlo Markov chain data association. IEEE Trans Pattern Anal Mach Intell 31(12):2196–2210

    Article  Google Scholar 

  • Isard M, Blake A (1998) Condensation-conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28

    Article  Google Scholar 

  • Lee MW, Nevatia R (2009) Human pose tracking in monocular sequence using multilevel structured models. IEEE Trans Pattern Anal Mach Intell 31(1):27–38

    Article  Google Scholar 

  • Wu Y, Yu T (2006) A field model for human detection and tracking. IEEE Trans Pattern Anal Mach Intell 28(5):753–765

    Article  Google Scholar 

  • Khan Z, Balch T, Dellaert F (2005) MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans Pattern Anal Mach Intell 27(11):1805–1819

    Article  Google Scholar 

  • Magnenat-Thalmann N, Thalmann D (1991) Complex models for animating synthetic actors. IEEE Comput Graph Appl 11(5):32–44

    Article  Google Scholar 

  • Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14:201–211

    Google Scholar 

  • Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94(2):115–147

    Article  Google Scholar 

  • Moeslund TB, Granum E (2001) A survey of computer vision-based human motion capture. Comput Vis Image Underst 81:231–268

    Article  MATH  Google Scholar 

  • Moeslund TB, Hilton A, Kruger V (2006) A survey of advances in vision-based human motion capture and analysis. Comput Vis Image Underst 104:90–126

    Article  Google Scholar 

  • Li SZ (2001) Markov random field modeling in image analysis. Springer, Tokyo

    MATH  Google Scholar 

  • Zeng J, Liu Z-Q (2008a) Markov random field-based statistical character structure modeling for handwritten Chinese character recognition. IEEE Trans Pattern Anal Mach Intell 30(5):767–780

    Article  Google Scholar 

  • Zeng J, Liu ZQ (2008b) Type-2 fuzzy Markov random fields and their application to handwritten Chinese character recognition. IEEE Trans Fuzzy Syst 16(3):747–760

    Article  Google Scholar 

  • Zeng J, Feng W, Xie L, Liu Z-Q (2010) Cascade markov random fields for stroke extraction of chinese characters. Inf Sci 180:301–311

    Article  Google Scholar 

  • Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):13

    Article  Google Scholar 

  • Kang J, Cohen I, Medioni G (2004) Object reacquisition using invariant appearance model. In: IEEE International Conference on Pattern Recognition (ICPR), pp 759–762

  • Chen Y, Rui Y, Huang TS (2001) JPDAF based HMM for real-time contour tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 543–550

  • Haritaoglu I, Harwood D, Davis LS (2000) w 4: Real-time surveillance of people and their activities. IEEE Trans Pattern Anal Mach Intell 22(8):809–830

    Article  Google Scholar 

  • Mansouri AR (2002) Region tracking via level set PDEs without motion computation. IEEE Trans Pattern Anal Mach Intell 24(7):947–961

    Article  Google Scholar 

  • Bertalmio M, Sapiro G, Randall G (2000) Morphing active contours. IEEE Trans Pattern Anal Mach Intell 22(7):733–737

    Article  Google Scholar 

  • Lan SF, Ho MF, Huang CL (2008) Human motion parameter capturing using particle filter and nonparametric belief propagation. In: IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp 37–40

  • Wu Y, Hua G, Yu T (2003) Tracking articulated body by dynamic markov network. In: IEEE International Conference on Computer Vision (ICCV), pp 1094–1101

  • Hua G, Yang MH, Wu Y (2005) Learning to estimate human pose with data driven belief propagation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 747–754

  • Han TX, Ning H, Huang TS (2006) Efficient nonparametric belief propagation with application to articulated body tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 214–221

  • Sigal L, Bhatia S, Roth S, Black MJ, Isard M (2004) Tracking loose-limbed people. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 421–428

  • Tomasi C, Kanade T (1991) Detection and tracking of point features, Technical Report CMU-CS-91-132, Carnegie Mellon Univ

  • Lowe D (2004) Distinctive image features form scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was partial supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 118608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qin Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, XQ., Liu, ZQ. Human motion detection using Markov random fields. J Ambient Intell Human Comput 1, 211–220 (2010). https://doi.org/10.1007/s12652-010-0015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-010-0015-1

Keywords

Navigation