Abstract
Big data is often thought as a large number of virous unstructured forms of data. Expensive intelligent computing engineering techniques of critical systems that are not cost-effective for non-critical systems may sometimes be used as a intelligent protection system. The private comparison is to compare the equality of the secret information of two parties privately, without disclosing any actual information. These secret information of two parties are big data that need to be analysed for comparison privately in critical system. Quantum private comparison is more safer than classic private comparison based on the theory of quantum mechanics. In this paper, a big data quantum private comparison scheme with intelligent third party is proposed. Two distrustful parties Alice and Bob compare the equivalence of big data information by quantum computing with the help of the intelligent robot belonged to a semi-honest third party Calvin. The participants including the intelligent robot are just required having the ability to prepare photons and perform measurement, which makes the presented protocol be more feasible in technique. The transmitted particles is in the anticlockwise order with a circle that make the transferred private information to be more safe. The technique of entanglement swapping makes the comparison be achieved with the help of the intelligent robot. Due to the photon transmission is a one-way distribution, the Trojan horse attack can be automatically avoided. It is secure against the various well-known attacks.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anders J, Browne DE (2009) Computational power of correlations. Phys Rev Lett 102(5):050502-1-050502-4. doi:10.1103/PhysRevLett.102.050502
Boudot F, Schoenmakers B, Traore J (2001) A fair and efficient solution to the socialist millionaires problem. Discrete Appl Math 111(1/2):23–26. doi:10.1016/S0166-218X(00)00342-5
Chang YJ, Tsai CW, Hwang T (2013) Multi-user private comparison protocol using GHZ class states. Qunatum Inf Process 12(2):1077–1088. doi:10.1007/s11128-012-0454-z
Chen XB, Xu G, Nie XX, Wen QY, Yang YX (2010) An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt Commun 283:1561–1565. doi:10.1016/j.optcom.2009.11.085
Chen YT, Hwang T (2014) Comment on the Quantum private on comparison protocol based on Bell entangled states. Int J Theor Phys 53:837–840. doi:10.1007/s10773-013-1872-0
Chen XB, Su Y, Niu XX, Yang YX (2014) Effcient and feasible quantum private comparison of equality against the collective amplitude damping noise. Qunatum Inf Process 13(1):101–112. doi:10.1007/s11128-012-0505-5
Gao F, Guo FZ, Wen QY, Zhu FC (2008) Comment on Experimental denonstration of a quantum protocol for byzantine agreement and liar detection. Phys Rev Lett 101(20):208901–1. doi:10.1103/PhysRevLett.101.208901
Guo FZ, Qin SJ, Gao F, Wen QY, Zhu FC (2010) Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur Phys J D 56(3):445–448. doi:10.1140/epjd/e2009-00306-3
He LB, Huang LS, Yang W, Xu R, Han DQ (2012) Cryptanalysis and melioration of secure quantum sealed-bid auction with post-confirmation. Quantum Inf Process 11(6):1359–1369. doi:10.1007/s11128-011-0275-5
Hogg T, Harsha P, Chen KY (2007) Quantum auctions. Int J Quantum Inf 5:751–780. doi:10.1142/S0219749907003183
Jiang L, He GQ, Nie D, Xiong J, Zeng GH (2012) Quantum anonymous voting for aontinuous variables. Phys Rev A 85(4):042309-1-042309-6. doi:10.1103/PhysRevA.85.042309
Li YB, Wen QY, Qin SJ (2011) Comment on Secure multiparty computation with a dishonest majority via quantum means. Phys Rev A 84(1):016301-1-016301-3. doi:10.1103/PhysRevA.84.016301
Liu W, Wang YB, Cui W (2012) Quantum private comparison protocol based on Bell entangled states. Commun Theor Phys 57(4):583–588. doi:10.1088/0253-6102/57/4/11
Lo HK, Chau HF (1997) Is quantum bit commitment really possible? Phys Rev Lett 78:3410–3413. doi:10.1103/PhysRevLett.78.3410
Loukopoulos K, Browne DE (2010) Secure multiparty computation with a dishonest majority via quantum means. Phys Rev A 81(6):062336-1-062336-9. doi:10.1103/PhysRevA.81.062336
Mayers D (1997) Unconditionally secure quantum bit commitment is impossible. Phys Rev Lett 78(17):3414–3417. doi:10.1103/PhysRevLett.78.3414
Peces CB, Ahrens A, Filipe J (2014) Advances in technologies and techniques for ambient intelligence. J Amb Intell Hum Comput 5(5):621–622. doi:10.1007/s12652-014-0244-9
Qin SJ, Gao F, Wen QY, Zhu FC (2007) Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret sharing protocol. Phys Rev A 76:062324–1–062324-7. doi:10.1103/PhysRevA.76.062324
Sung PC, Hsu CC, Lee CL, Chiu YSP, Chen HL (2015) Formulating grip strength and key pinch strength prediction models for Taiwanese: a comparison between stepwise regression and artifcial neural networks. J Amb Intell Hum Comput 6(1):37–46. doi:10.1007/s12652-014-0245-8
Tseng HY, Lin J, Hwang T (2012) New quantum private comparison protocol using EPR pairs. Qunatum Inf Process 11(2):373–384. doi:10.1007/s11128-011-0251-0
Tseng CT, Lee YL, Chou CC (2015) An ambient intelligence system for water release scheduling in cascade hydropower systems. J Amb Intell Hum Comput 6(1):47–55. doi:10.1007/s12652-014-0250-y
Vaccaro JA, Spring J, Chefles A (2007) Quantum anonymous voting and surveying. Phys Rev A 75(1):012333-1-012333-8. doi:10.1103/PhysRevA.75.012333
Xu GA, Chen XB, Wei ZH, Yang YX (2012) An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Inf J Quant Inform 10(04):1250045. doi:10.1142/S0219749912500451
Yang YG, Zhou Z, Teng YW, Wen QY (2011) Arbitrated quantum signature with anuntrusted arbitrator. Eur Phys J D Atom Mol Opt Plasma Phys 61(3):773–778. doi:10.1140/epjd/e2010-10157-4
Yao YC (1982) Protocols for secure computations. In: Proc. of the 23rd annual IEEE symposim on foundations of computer. IEEE Computer Society, Washington, pp 160–164. doi:10.1103/PhysRevLett.102.050502
Acknowledgments
The research is funded by National Natural Science Foundation of China, under Grant Nos. 61003258, 61472165, and Science and Technology Planning Project of Guang-dong Province, China, under Grant No. 2013B010401018, and Natural Science Foundation of Guangdong Province, China, under Grant No. 2014A030310245, and Guangzhou Zhujiang Science and Technology Future Fellow Fund, under Grant No. 2012J2200094.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tan, X., Zhang, X. & Li, J. Big data quantum private comparison with the intelligent third party. J Ambient Intell Human Comput 6, 797–806 (2015). https://doi.org/10.1007/s12652-015-0297-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-015-0297-4