Abstract
Localization is an important part of wireless network design. In many internet of things (IoT) and other applications, the information produced by an individual entity or node is of limited use without knowledge of its location. Not only it is needed to report data that is geographically meaningful, but it is also required for services such as geographic and context-based routing protocols, location-aware services, location of sensed events in the physical world, object or target tracking, coverage area management and disaster event notification, like gas leakage detection system. This work is intended to perform comprehensive study on effects of topology on performance of existing range-free localization algorithms, in particular, localization in anisotropic network (irregular areas due to holes). We extended a simulation framework, written in Python, which is specially designed for wireless network simulation and add an interactive generic topology generator module. Our simulation framework also produces interactive charts, plots, and log all relevant simulation results for further analysis. In the first phase of our research we are interested in establishing a comprehensive simulation framework or guideline by implementing the original Distance Vector or DV-Hop algorithm. We first generate multiple isotropic and anisotropic topologies of different shapes and then simulate the DV-Hop localization algorithm. We then analyze the results statistically and visually. Our proposed contribution in this paper provides a framework and guideline to systematically and statistically study and compare different network algorithms.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahmed A (2004) Performance study of localization methods for ad-hoc sensor networks. In: 2004 IEEE international conference on mobile ad-hoc and sensor systems (IEEE Cat. No.04EX975), IEEE, pp 184–193. doi:10.1109/MAHSS.2004.1392106. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1392106
Ali Q, Abdulmaowjod A, Mohammed H (2010) Simulation & performance study of wireless sensor network (WSN) using MATLAB. In: 1st international conference on power and control (EPC-IQ), pp 307–314
Arbula D, Lenac K (2013) Pymote: high level python library for event-based simulation and evaluation of distributed algorithms. Int J Distrib Sens Netw 797354:12. doi:10.1155/2013/797354
Bin X, Lin C, Qingjun X, Minglu L (2010) Reliable Anchor-based sensor localization in irregular areas. IEEE Trans Mobile Comput 9(1):60–72. doi:10.1109/TMC.2009.100
Bulusu N, Heidemann J, Estrin D (2000) GPS-less low-cost outdoor localization for very small devices. IEEE Pers Commun 7(5):28–34. doi:10.1109/98.878533
Chen H, Sezaki K, Deng P, So HC (2008) An improved DV-Hop localization algorithm for wireless sensor networks. In: 2008 3rd IEEE conference on industrial electronics and applications, IEEE, pp 1557–1561. doi:10.1109/ICIEA.2008.4582780, URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4582780
Cheng L, Wu C, Zhang Y, Wu H, Li M, Maple C (2012) A Survey of localization in wireless sensor network. Int J Distrib Sens Netw 2012:12. doi:10.1155/2012/962523
He T, Huang C, Blum BM, Stankovic JA, Abdelzaher TF (2005) Range-free localization and its impact on large scale sensor networks. ACM Trans Embedded Comput Syst 4(4):877–906. doi:10.1145/1113830.1113837
Høns T (2013) Highcharts, highstock and highmaps documentation-highcharts. http://www.highcharts.com/docs
Hu Y, Li X (2013) An improvement of DV-Hop localization algorithm for wireless sensor networks. Telecommun Syst 53(1):13–18. doi:10.1007/s11235-013-9671-8
Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95. doi:10.1109/MCSE.2007.55
Ji X, Paul A, Sato T, Zhang S, Liu X, Wang J, Cao J, Min G, Wang C, Xiao L, Hu Y, Li X (2013) Localization algorithms for wireless sensor network systems. ACM Trans Sensor Netw 11(1):1–28. doi:10.1145/2746343
Kung HT, Lin C-k, Lin T-H, Vlah D (2009) Localization with snap-inducing shaped residuals (SISR): coping with errors in measurement. Proceedings of the 15th annual international conference on Mobile computing and networking (MobiCom '09). ACM, New York, NY, USA, pp 333–344. doi:10.1145/1614320.1614357
Lim H (2005) Localization for anisotropic sensor networks. In: Proceedings IEEE 24th annual joint conference of the IEEE computer and communications societies, IEEE, vol 1, pp 138–149. doi:10.1109/INFCOM.2005.1497886, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1497886
Li M, Liu Y (2010) Rendered path: range-free localization in anisotropic sensor networks with holes. IEEE/ACM Trans Netw 18(1):320–332. doi:10.1109/TNET.2009.2024940
Lu K, Xiang X, Zhang D, Mao R, Feng Y (2011) Localization algorithm based on maximum a posteriori in wireless sensor networks. Int J Distrib Sensor Netw 2012. p 7. doi:10.1155/2012/260302
Mao G, Fidan B, Anderson BD (2007) Wireless sensor network localization techniques. Comput Netw 51(10):2529–2553. doi:10.1016/j.comnet.2006.11.018
Nagpal R, Shrobe H, Bachrach J (2003) Organizing a global coordinate system from local information on an ad hoc sensor network. In: Information processing in sensor, vol 2634, chap Information. Springer, Berlin, pp 333–348. doi:10.1007/3-540-36978-3_22
Nazir U, Arshad MA, Shahid N, Raza SH (2012) Classification of localization algorithms for wireless sensor network: a survey. In: 2012 international conference on open source systems and technologies (ICOSST), pp 1–5. doi:10.1109/ICOSST.2012.6472830
Niculescu D, Nath B (2003) DV based positioning in ad hoc networks. Telecommun Syst 22(1–4):267–280. doi:10.1023/A:1023403323460
Sahu PK, Wu EK, Sahoo J (2013) DuRT: dual RSSI trend based localization for wireless sensor networks. IEEE Sensors J 13(8):3115–3123. doi:10.1109/JSEN.2013.2257731
Shahzad F (2015) Extending the functionality of pymote: low level protocols and simulation result analysis. Int J Sensor Netw Data Commun 04(02). doi:10.4172/2090-4886.1000125
Shang Y, Ruml W (2004) Improved MDS-based localization. In: IEEE INFOCOM 2004, IEEE, vol 4, pp 2640–2651. doi:10.1109/INFCOM.2004.1354683, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1354683
Shahzad F, Sheltami TR (2015) An efficient MAC scheme in wireless sensor network with energy harvesting (EHWSN) for cloud based applications. In: 2015 IEEE 40th local computer networks conference workshops (LCN Workshops), IEEE, pp 783–788. doi:10.1109/LCNW.2015.7365928
Shang Y, Shi H, Ahmed AA (2004) Performance study of localization methods for ad-hoc sensor networks. In: 2004 IEEE international conference on mobile ad-hoc and sensor systems (IEEE Cat. No.04EX975), IEEE, pp 184–193. doi:10.1109/MAHSS.2004.1392106
Sobeih A (2006) J-Sim: a simulation and emulation environment for wireless sensor networks. IEEE Wirel Commun 13(4):104–119. doi:10.1109/MWC.2006.1678171
Stoleru R, He T, Mathiharan SS, George SM, Stankovic JA (2012) Asymmetric event-driven node localization in wireless sensor networks. IEEE Trans Parallel Distrib Syst 23(4):634–642. doi:10.1109/TPDS.2011.227
Xiao Q, Xiao B, Cao J, Wang J (2010) Multihop range-free localization in anisotropic wireless sensor networks: a pattern-driven scheme. IEEE Trans Mobile Comput 9(11):1592–1607. doi:10.1109/TMC.2010.129
Yu N, Wan J, Song Q, Wu Y (2006) An improved DV-hop localization algorithm in wireless sensor networks. In: 2006 IEEE international conference on information acquisition, IEEE, pp 638–643. doi:10.1109/ICIA.2006.305800, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4097733
Zhang S, Liu X, Wang J, Cao J, Min G (2015) Accurate range-free localization for anisotropic wireless sensor networks. ACM Trans Sensor Netw 11(3):1–28. doi:10.1145/2746343
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shahzad, F., Sheltami, T.R. & Shakshuki, E.M. Effect of network topology on localization algorithm’s performance. J Ambient Intell Human Comput 7, 445–454 (2016). https://doi.org/10.1007/s12652-016-0349-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-016-0349-4