Abstract
Video immersive communication has become a new trend in human-interaction technologies by the information exchanging, which requires the object based coding to provide very low bit rate compression for transmission as well as to protect the privacy of the users. In addition, advanced content-based functionalities in ambient intelligence such as encoder/decoder selection and manipulation of specific objects in a video stream also need the support from object based coding. Unfortunately, due to a malicious entity of modification/replacement/removement of the individual foreground objects and background in the video, effective video authenticity protection is still challenging in some realistic cases. In this paper, we propose an object based coding authentication strategy based on a Chinese remainder theorem for video authenticity protection during transmission. With the watermark generation for single frame and content scalable video coding, we performed the proposed authenticity verification on both original video and sub-video. Based on the efficiency evaluation on video transmission, the proposed approach ensures an applicable authenticity between the foreground objects and their associated background for video immersive applications.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.












Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Atrey PK, Yan W-Q, Kankanhalli MS (2007) A scalable signature scheme for video authentication. Multimed Tools Appl (MTAP) 34(1):107–135
Barni M, Bartolini F, Checcacci N (2005) Watermarking of mpeg-4 video objects. IEEE Trans Multimed (T-MM) 7(1):23–32
Chang C-C, Lee J-S (2009) Robust t-out-of-n oblivious transfer mechanism based on crt. J Netw Comput Appl 32(1):226–235
Chien SY, Huang YW, Hsieh BY, Ma SY, Chen LG (2004) Fast video segmentation algorithm with shadow cancellation, global motion compensation, and adaptive threshold techniques. IEEE Trans Multimed (T-MM) 6(5):732–748
Chiou GH, Chen WT (1989) Secure broadcasting using the secure lock. IEEE Trans Softw Eng (T-SE) 15(8):929–934
Ding C, Pei D, Salomaa A (1996) Chinese remainder theorem: applications in computing, coding, cryptography. World Scientific, Singapore
Ebrahimi T, Reusens E, Li W (1995) New trends in very low bitrate video coding. Proc IEEE 83(6):877–891
Gerken P (1994) Object-based analysis-synthesis coding of image sequences at very low bit rates. IEEE Trans Circ Syst Video Technol (T-CSVT) 4(3):228–235
Grgić M, Zovko-Cihlar, B, Bauer S (1997) Coding of audio-visual objects. In: 39th international symposium electronics in marine-ELMAR” 97
He D, Sun Q, Tian Q (2003) A robust object-based video authentication system. In: International conference on information technology: research and education. IEEE, New York, pp 253–254
Hefeeda M, Mokhtarian K (2010) Authentication schemes for multimedia streams: quantitative analysis and comparison. ACM Trans Multimed Comput Commun Appl (TOMCCAP) 6(1):6
Hu B, Ye W, Feng SL, Wang XL, Xie X (2006) Key distribution scheme based on two cryptosystems for hierarchical access control. In: 2006 8th international conference advanced communication technology, vol 3. IEEE, New York, p 6
Iqbal R, Shirmohammadi S, El-Saddik A, Zhao J (2008) Compressed-domain video processing for adaptation, encryption, and authentication. IEEE MultiMed 15(2):38–50
Li L, Huang W, Gu IY, Tian Q (2003) Foreground object detection from videos containing complex background. In: Proceedings of the eleventh ACM international conference on multimedia (ACMM MM). ACM, New York, pp 2–10
Liang CY, Li A, Niu XM (2007) Video authentication and tamper detection based on cloud model. In: Third international conference on intelligent information hiding and multimedia signal processing (IIHMSP), vol 1. IEEE, New York, pp 225–228
Musmann HG (1995) A layered coding system for very low bit rate video coding. Signal Process Image Commun 7(4):267–278
Ostermann J, Gerken P (1993) Object-oriented analysis-synthesis coding based on the source models of moving 2d-and 3d-objects. In: ISO/IEC JTC1/SC29AVG11, MPEG\(^ t\) seminar, Doc.(93), vol 710
Park SW, Shin SU (2008) Combined scheme of encryption and watermarking in h. 264/scalable video coding (svc). New directions in intelligent interactive multimedia. Springer, Berlin, pp 351–361
Patra JC, Karthik A, Meher PK, Bornand C (2008) Robust crt-based watermarking technique for authentication of image and document. In: IEEE international conference on systems, man and cybernetics (SMC). IEEE, New York, pp 3250–3255
Patra JC, Phua JE, Bornand C (2010) A novel dct domain crt-based watermarking scheme for image authentication surviving jpeg compression. Digit Signal Process 20(6):1597–1611
Piva A, Caldelli R, De Rosa A (2000) A dwt-based object watermarking system for mpeg-4 video streams. In: International conference on image processing (ICIP), vol 3. IEEE, New York, pp 5–8
Pramateftakis A, Oelbaum T, Diepold K (2004) Authentication of mpeg-4-based surveillance video. In: International conference on image processing (ICIP), vol 1. IEEE, New York, pp 33–37
Privitera CM, Stark LW (2000) Algorithms for defining visual regions-of-interest: comparison with eye fixations. IEEE Trans Pattern Anal Mach Intell (T-PAMI) 22(9):970–982
Qureshi FZ (2009) Object-video streams for preserving privacy in video surveillance. In: Sixth IEEE international conference on advanced video and signal-based surveillance (AVSS 2009). IEEE, New York, pp 442–447
Shamim A, Robinson JA (2002) Object-based video coding by global-to-local motion segmentation. IEEE Trans Circ Syst Video Technol (T-CSVT) 12(12):1106–1116
Song H, Kuo CC (2004) A region-based h. 263+ codec and its rate control for low vbr video. IEEE Trans Multimed (T-MM) 6(3):489–500
Sun Q, He D, Tian Q (2006) A secure and robust authentication scheme for video transcoding. IEEE Trans Circ Syst Video Technol (T-CSVT) 16(10):1232–1244
Swanson MD, Zhu B, Chau B, Tewfik AH (1997) Object-based transparent video watermarking. In: IEEE first workshop on multimedia signal processing. IEEE, New York, pp 369–374
Talluri R, Oehler K, Barmon T, Courtney JD, Das A, Liao J (1997) A robust, scalable, object-based video compression technique for very low bit-rate coding. IEEE Trans Circ Syst Video Technol (T-CSVT) 7(1):221–233
Tang CW, Chen CH, Yu YH, Tsai CJ (2006) Visual sensitivity guided bit allocation for video coding. IEEE Trans Multimed (T-MM) 8(1):11–18
Thomas T, Emmanuel S, Subramanyam A, Kankanhalli MS (2009) Joint watermarking scheme for multiparty multilevel drm architecture. IEEE Trans Inf Foren Secur (T-IFS) 4(4):758–767
Thomas T, Emmanuel S, Zhang P, Kankanhalli MS (2010) An authentication mechanism using chinese remainder theorem for efficient surveillance video transmission. In: Seventh IEEE international conference on advanced video and signal based surveillance (AVSS). IEEE, New York, pp 567–573
Wandell BA (1995) Foundations of vision. Sinauer Associates, Sunderland
Wang H, Tsaftaris SA, Katsaggelos AK (2006) Joint source-channel coding for wireless object-based video communications utilizing data hiding. IEEE Trans Circ Syst Video Technol (T-CSVT) 15(8):2158–2169
Wang S, Yang J, Zhao Y, Cai A, Li SZ (2011) A surveillance video analysis and storage scheme for scalable synopsis browsing. In: IEEE international conference on computer vision workshops (ICCV workshops). IEEE, New York, pp 1947–1954
Wang W, Xia XG (2010) A closed-form robust chinese remainder theorem and its performance analysis. IEEE Trans Signal Process (T-SP) 58(11):5655–5666
Wu Y, Deng RH (2006) Scalable authentication of mpeg-4 streams. IEEE Trans Multimed (T-MM) 8(1):152–161
Acknowledgments
This work is supported by the Grants 61301194, 61571362, 61363046, 61403182, 61601505 approved by the National Natural Science Foundation, China, and the National Research Foundation, Prime Minister’s Office, Singapore under its International Research Centre in Singapore Funding Initiative, and the Young Talented Scientist Grant 20153BCB23029 approved by the Jiangxi Provincial Department of Science and Technology.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, P., Thomas, T., Zhuo, T. et al. Object coding based video authentication for privacy protection in immersive communication. J Ambient Intell Human Comput 8, 871–884 (2017). https://doi.org/10.1007/s12652-016-0401-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-016-0401-4