Abstract
The use of public open data is an opportunity for citizens and businesses to create products that contribute to decision-making, monitor and control public institutions as well as to improve the quality of life. Open data allows citizens to have unrestricted access to information collected by the government. Model-Driven Engineering (MDE) is an approach to software development that represent artifacts as models with the goal of reducing costs in the software development process. The use of these models allows to improve the processes of application development. The purpose of MDE is to try to reduce costs and development times and improve the quality of the systems, regardless the platform and guaranteeing business investments against the rapid evolution of technology. Thus, it will not be necessary to start from scratch whenever a new project is proposed or some type of maintenance on the product is desired so the associated cost will be reduced. This paper presents a metamodel and its corresponding domain specific language that captures public data and then transport, transform, analyze them in order to help decision-making to the agroindustry stakeholders.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aivazidou E, Tsolakis N, Iakovou E, Vlachos D (2016) The emerging role of water footprint in supply chain management: A critical literature synthesis and a hierarchical decision-making framework. J Cleaner Prod 137:1018–1037. doi:10.1016/j.jclepro.2016.07.210
Akimowicz M, Cummings H, Landman K (2016) Green lights in the Greenbelt? A qualitative analysis of farm investment decision-making in peri-urban Southern Ontario. Land Use Policy 55:24–36. doi:10.1016/j.landusepol.2016.03.024
Aparicio A, Palacios DW, Martínez AM, Ángel I, Verduzco C, Retana E (2006) Métodos de Investigación Avanzada. el cuestionario
Aqeel-ur-Rehman ZA, Abbasi AZ, Islam N, Shaikh Z (2014) A review of wireless sensors and networks’ applications in agriculture. Comput Stand Interfaces 36(2):263–270
Barbier G, Cucchi V, Hill DR (2015) Model-driven engineering applied to crop modeling. Ecol Informatics 26(P2):173–181. doi:10.1016/j.ecoinf.2014.05.004
Bech S, Kristensen P (2016) Land Use Policy Agriculture and landscape interaction—landowners’ decision-making and drivers of land use change in rural Europe. Land Use Policy 57:759–763. doi:10.1016/j.landusepol.2016.05.025
Brandt P, Butterbach-bahl K, Rufino MC (2015) How to target climate-smart agriculture†¯? Concept and application of the consensus-driven decision support framework. Agric Syst. doi:10.1016/j.agsy.2015.12.011
Cabrerizo F, Moreno, J, Pérez I, Herrera-Viedma E (2010) Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Comput 14(5):451–463
Cabrerizo F, Herrera-Viedma E, Pedrycz W (2013) A Method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. Eur J Oper Res 230(3):624–633
Cabrerizo F, Chiclana F, Al-Hmouz R, Morfeq A, Balamash A, Herrera-Viedma E (2015) Fuzzy decision making and consensus: challenges. J Intell Fuzzy Syst 29(3):1109–1118
Calegari D, Luna C, Canabé M, Sierra F, Szasz N, Pons C (2010) Ingeniería Dirigida por Modelos Aplicada al Control Automático del Almacenamiento en Silos Bolsa. In: Memorias II Congreso de agroinformática (CAI 2010), pp 623–636
Capalbo SM, Antle JM, Seavert C (2016) Next generation data systems and knowledge products to support agricultural producers and science-based policy decision making. Agric Syst. doi:10.1016/j.agsy.2016.10.009
Carbonell J, Michalski R, Mitchell T (1983) An Overview of Machine Learning. Machine Learn SE 1. doi:10.1007/978-3-662-12405-5_1
Dennis C, Aguilera JM, Satin M (2013) Tecnologías que dan forma al futuro. In: Agroindustrias para el desarroll (FAO 2013), pp 103–135
Duan L, Xu L (2012) Business intelligence for enterprise systems: a survey. Ind Inform IEEE Transa 8(3):679–687
Espinoza A, Trujillo JL (2010) Ingeniería dirigida por Modelos. Revista Alghoritmic 1(1):7–20
European Commission (2011) Open data: An engine for innovation, growth and transparent governance. doi:10.1017/CBO9781107415324.004
Fodor J, Roubens M (1994) Fuzzy preference modelling and multicriteria decision support. Kluwer Academic Publishers, Boston. doi:10.1007/978-94-017-1648-2
García-Díaz V, Tolosa J, Pelayo B, Palacios-González E, Sanjuan-Martínez Ó, Gonzalez R (2009) TALISMAN MDE Framework: An Architecture for Intelligent Model-Driven Engineering. In S. Omatu M, Rocha J, Bravo F, Fernández E, Corchado A, Bustillo, Corchado (eds.), Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living: 10th International Work-Conference on Artificial Neural Networks, IWANN 2009 Workshops, Salamanca, Spain, June 10–12, 2009. Proceedings, Part II (pp. 299–306). inbook, Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-02481-8_43
García-Díaz V, Pascual-Espada J, Pelayo C, Cueva JM (2015) Towards a Standard-based Domain-specific Platform to Solve Machine Learning-based Problems. International Journal of Interactive Multimedia Artificial Intelligence, 3(5): 6–12. doi:10.9781/ijimai.2015.351
Gomes Á, Soares D (2014) Open government data initiatives in Europe: Northern versus southern countries analysis. In Proceedings of the 8th International Conference on Theory and Practice of Electronic Governance—ICEGOV’14: 342–350. doi:10.1145/2691195.2691246
GODAN (2016) Global open data for agriculture & nutrition. Retrieved from http://www.godan.info/about
Janssen S, Porter A, Moore I, Athanasiadis I, Foster J, Jones J, Antle J (2015) Building an Open Web-Based Approach to Agricultural Data, System Modeling and Decision Support. Retrieved from AgMIP, http://goo.gl/kg81jf
Jetzek T, Avital M, Bjorn-Andersen N (2012) The Value of Open Government Data: A Strategic Analysis Framework. SIG eGovernment Pre-ICIS Workshop 2012, Retrieved from http://openarchive.cbs.dk/bitstream/handle/10398/8621/Jetzek.pdf?sequence=1
Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA Ritchie JT (2003) DSSAT cropping system model. Eur J Agron 18:235–265
Kawtrakul A (2012) Ontology engineering and knowledge services for agriculture domain. J Integr Agric 11(5):741–751. doi:10.1016/S2095-3119(12)60063-X
Kozik R, Choraś M, Flizikowski A et al (2015) Advanced services for critical infrastructures protection. J Ambient Intell Human Comput 6(6):783–795. doi:10.1007s12652-015-0283-x
Kwakkel JH, Haasnoot M, Walker WE (2016) Comparing robust decision-making and dynamic adaptive policy pathways for model-based decision support under deep uncertainty. Environ Model Softw 86:168–183. doi:10.1016/j.envsoft.2016.09.017
Lehrer K, Wagner C (1981) A philosophical and mathematical study. Rational consensus in science and society. Springer, Netherlands. doi:10.1007/978-94-009-8520-9
López-Quintero J, Cueva J, González R, García-Díaz V (2016) A personal knowledge management metamodel based on semantic analysis and social information. Soft Comput 1–(10). doi:10.1007/s00500-016-2437-y
Maciejewski M, Salanova J, Bischoff J et al (2016) Large-scale microscopic simulation of taxi services. Berlin and Barcelona case studies. J Ambient Intell Human Comput 7(3):385–393. doi:10.1007s12652-016-0366-3
Mbũgwa G, Prager SD, Krall JM (2015) Utilization of spatial decision support systems decision-making in dryland agriculture: A Tifton burclover case study. Comput Electron Agric 118:215–224. doi:10.1016/j.compag.2015.09.008
Mohanraj I, Ashokumar K, Naren J (2016) Field Monitoring and automation using IOT in agriculture domain. procedia computer. Science 93: 931–939. doi:10.1016/j.procs.2016.07.275
Monsanto (2016) Monsanto products. Retrieved 20 June 2011, from http://test.monsanto.com/products/pages/integrated-farming-systems.aspx
Montenegro CE, Gaona A, Cueva J M, Sanjuán O (2011) Aplicación de Ingenieria dirigida por Modelos (MDA), Para la construcción de una herramienta de modelado de dominio Especifico (DSM) y la creación de modulos en sistemas de gestión de aprendizaje (LMS) independientes de la plataforma. Dyna Colombia 169:43–52
Núñez-Valdez E, García-Díaz V, Cueva J, Achaerandio Y, González-Crespo R (2016) A model-driven approach to generate and deploy videogames on multiple platforms. J Ambient Intell Humaniz Comput 1–13. doi:10.1007/s12652-016-0404-1
Organización de las Naciones Unidas para la Alimentación y la Agricultura (2013) Agroindustrias para el desarrollo. Roma. Retrieved from http://www.fao.org/docrep/017/i3125s/i3125s00.pdf
Pérez I, Cabrerizo F, Herrera-Viedma E (2010) A Mobile decision support system for dynamic group decision making problems. IEEE Transa Syst Man Cybernetics Part A Syst Humans 40(6):1244–1256
Dupont Pioneer (2016) Dupont Pioneer Products. Retrieved 20 June 2011, from https://www.pioneer.com/home/site/us/products/
Robert M, Thomas A, Sekhar M, Badiger S, Ruiz L, Raynal H, Bergez JE (2016) Adaptive and dynamic decision-making processes: A conceptual model of production systems on Indian farms. Agric Syst 1–13. doi:10.1016/j.agsy.2016.08.001
Rodrigues WO, Guyomarc’h F, Dekeyser JL (2013) An MDE approach for automatic code generation from UML/MARTE to OpenCL. Comput Sci Eng 15(1): 46–55. doi:10.1109/MCSE.2012.35
Rodriguez LA, Cueva JM, Tarazona GM, Montenegro CE (2013) Open Data as a key factor for developing expert systems: a perspective from Spain. Int J Interact Multimed Artif Intell 2(2):51–55. doi:10.9781/ijimai.2013.226
Rose DC, Sutherland WJ, Parker C, Lobley M, Winter M, Morris C, Dicks LV (2016) Decision support tools for agriculture: Towards effective design and delivery. Agric Syst 149:165–174. doi:10.1016/j.agsy.2016.09.009
Singh C, Dorward P, Osbahr H (2016) Developing a holistic approach to the analysis of farmer decision-making: implications for adaptation policy and practice in developing countries. Land Use. Policy 59:329–343. doi:10.1016/j.landusepol.2016.06.041
Stephenson PJ, Bowles-Newark N, Regan E, Stanwell-Smith D, Diagana M, Höft R, Thiombiano A (2016) Unblocking the flow of biodiversity data for decision-making in Africa. Biol Conserv. doi:10.1016/j.biocon.2016.09.003
Tarazona GM, Rodriguez L (2013) Model-Driven Engineering for Electronic Commerce. In: Garcia V, Cueva-lovelle JM, Pelayo C, Sanjuán O (eds) Progressions and Innovations in ModelDriven Software Engineering (vol. i, pp. 196–208). Engineering Science Reference (an imprint of IGI Global), Hershey USA
The World Bank (2014) Open data for economic growth. World Bank, Washington D.C
Troya J, Vallecillo A, Durán F, Zschaler S (2013) Model-driven performance analysis of rule-based domain specific visual models. Inf Softw Technol 55(1):88–110
Vickery G (2011) Review of recent studies on PSI er-use and related market developments. Inform Economics. Digital Economy & Society. European Commission
Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry—recent development and future perspective. Comput Electron Agric 50(1):1–14. doi:10.1016/j.compag.2005.09.003
Zadeh L (1975) The concept of a linguistic variable and its applications to approximate reasoning. Part I. Inf Sci 8(3):199–243
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rojas, L.A.R., Lovelle, J.M.C., Bermúdez, G.M.T. et al. Metamodel to support decision-making from open government data. J Ambient Intell Human Comput 9, 553–563 (2018). https://doi.org/10.1007/s12652-016-0443-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-016-0443-7