Abstract
This paper presents a novel classification method based on spatial–spectral low-rank representation in the hidden field under a Bayesian framework for hyperspectral imagery. The key idea of the method is to simultaneously explore the low-rank property in the spectral domain and nonlocal self-similarity in the spatial domain of the hidden field, which is estimated by sparse multinomial logistic regression in a supervised manner. First, the low rank property in the spectral domain is exploited in local cubic patches. Following this, similar cubic patches are clustered into several groups in a nonlocal sense and patches in each group are assumed to lie in a low-rank subspace. The final model could be efficiently solved by the augmented Lagrangian method. Experimental results on two real hyperspectral datasets validate that the proposed classifier produces a superior performance compared to other state-of-the-art classifiers in terms of overall accuracy, average accuracy and the kappa statistic (k).






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bioucas-Dias J, Condessa F, Kovačević J (2014) Alternating direction optimization for image segmentation using hidden Markov measure field models. In: IS&T/SPIE Electronic Imaging, pp 90190P–90190P
Camps-Valls G, Gomez-Chova L, Muñoz-Marí J, Vila-Frances J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97
Camps-Valls G, Shervashidze N, Borgwardt KM (2010) Spatio-spectral remote sensing image classification with graph kernels. IEEE Geosci Remote Sens Lett 7(4):741–745
Cao X, Xu L, Meng D, Zhao Q, Xu Z (2017) Integration of 3-dimensional discrete wavelet transform and Markov random field for hyperspectral image classification. Neurocomputing 226:90–100
Chen Y, Nasrabadi NM, Tran TD (2011) Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans Geosci Remote Sens 49(10):3973–3985
Chen Y, Nasrabadi NM, Tran TD (2013) Hyperspectral image classification via kernel sparse representation. IEEE Trans Geosci Remote Sens 51(1):217–231
Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2094–2107
Chutia D, Bhattacharyya DK, Sarma KK, Kalita R, Sudhakar S (2016) Hyperspectral remote sensing classifications: a perspective survey. Trans GIS 20(4):463–490
Condessa F, Bioucas-Dias J, Kovacevic J (2015) SegSALSA-STR: a convex formulation to supervised hyperspectral image segmentation using hidden fields and structure tensor regularization. arXiv:1504.07028(preprint)
Dalla Mura M, Benediktsson JA, Waske B (2010) Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans Geosci Remote Sens 48(10):3747–3762
Fang L, Li S, Kang X, Benediktsson JA (2014) Spectral–spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans Geosci Remote Sens 52(12):7738–7749
Feng X, Li Q (2014) Hyperspectral image classification based on 3-D gabor filter and support vector machines. Spectrosc Spectr Anal 34(8):2218–2224
Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416
Gu S, Xie Q, Meng D, Zuo W, Feng X, Zhang L (2017) Weighted nuclear norm minimization and its applications to low level vision. Int J Comp Vis 121(2):183–208
Guo B, Gunn SR, Damper RI, Nelson JD (2006) Band selection for hyperspectral image classification using mutual information. IEEE Geosci Remote Sens Lett 3(4):522–526
He Z, Liu L, Deng R, Shen Y (2016) Low-rank group inspired dictionary learning for hyperspectral image classification. Signal Process 120:209–221
He L, Li J, Plaza A, Li Y (2017) Discriminative low-rank Gabor filtering for spectral–spatial hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(3):1381–1395
Jia S, Ji Z, Qian Y, Shen L (2012) Unsupervised band selection for hyperspectral imagery classification without manual band removal. IEEE J Sel Top Appl Earth Observ Remote Sens 5(2):531–543
Jia S, Shen L, Li Q (2015) Gabor feature-based collaborative representation for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 53(2):1118–1129
Li W, Tramel EW, Prasad S, Fowler JE (2014a) Nearest regularized subspace for hyperspectral classification. IEEE Trans Geosci Remote Sens 52(1):477–489
Li J, Zhang H, Zhang L (2014b) Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification. ISPRS J Photogramm Remote Sens 94:25–36
Li W, Du Q, Zhang F, Hu W (2015a) Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery. IEEE Geosci Remote Sens Lett 12(2):389–393
Li W, Du Q, Xiong M (2015b) Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification. IEEE Geosci Remote Sens Lett 12(1):48–52
Li C, Ma Y, Huang J, Mei X, Ma J (2015c) Hyperspectral image denoising using the robust low-rank tensor recovery. JOSAA 32(9):1604–1612
Li J, Zhang H, Zhang L (2015d) Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification. IEEE Trans Geosci Remote Sens 53(10):5338–5351
Li W, Du Q, Zhang F, Hu W (2016a) Hyperspectral image classification by fusing collaborative and sparse representations. IEEE J Sel Top Appl Earth Observ Remote Sens 9(9):4178–4187
Li J, Kong Y, Zhao H, Yang J, Fu Y (2016b) Learning fast low-rank projection for image classification. IEEE Trans Image Process 25(10):4803–4814
Li J, Liu F, Zhao H, Fu Y (2017) Projective low-rank subspace clustering via learning deep encoder. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence, pp 2145–2151
Liu Y, Cibdessa F, Bioucas-Dias J, Li J, Plaza A (2016a) Convex formulation for hyperspectral image classification with superpixels segmentation. In: Proceedings of IGARSS, pp 3294–3297
Liu J, Wu Z, Li J, Plaza A, Yuan Y (2016b) Probabilistic-kernel collaborative representation for spatial–spectral hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(4):2371–2384
Mei S, Bi Q, Ji J, Hou J, Du Q (2017) Hyperspectral image classification by exploring low-rank property in spectral or/and spatial domain. IEEE J Sel Top Appl Earth Observ Remote Sens
Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790
Moroni M, Lupo E, Marra E, Cenedese A (2013) Hyperspectral image analysis in environmental monitoring: setup of a new tunable filter platform. Procedia Environ Sci 19:885–894
Pan B, Shi Z, Xu X (2017) R-VCANet: a new deep-learning-based hyperspectral image classification method. IEEE J Sel Top Appl Earth Observ Remote Sens 10(5):1975–1986
Prabusankarlal KM, Thirumoorthy P, Manavalan R (2015) Assessment of combined textural and morphological features for diagnosis of breast masses in ultrasound. Hum Centr Comput Inf Sci 5(1):1–17
Qi R, Zhang Y, Li H (2017) Block sparse signals recovery via block backtracking-based matching pursuit method. J Inf Process Syst 13(2):360–369
Sahoo RN, Ray SS, Manjunath KR (2015) Hyperspectral remote sensing of agriculture. Curr Sci 108(5):847–859
Shahshahani BM, Landgrebe DA (1994) The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans Geosci Remote Sens 32(5):1087–1095
Sun Y, Gu F (2017) Compressive sensing of piezoelectric sensor response signal for phased array structural health monitoring. Int J Sens Netw 23(4):258–264
Sun L, Wu Z, Liu J, Xiao L, Wei Z (2015a) Supervised spectral–spatial hyperspectral image classification with weighted Markov random fields. IEEE Trans Geosci Remote Sens 53(3):1490–1503
Sun L, Shim HJ, Jeon B, Zheng Y, Chen Y, Xiao L, Wei Z (2015b) Hyperspectral image classification using multinomial logistic regression and non-local prior on hidden fields. In: Proceedings of PIC, pp 1–4
Sun L, Jeon B, Zheng Y, Wu Z (2017a) Homogeneous region based low rank representation in hidden field for hyperspectral classification. In: Proceedings of IGARSS, pp 1–4
Sun L, Jeon B, Zheng Y, Wu Z (2017b) Hyperspectral image restoration using low-rank representation on spectral difference image. IEEE Geosci Remote Sens Lett 14(7):1151–1555
Tarabalka Y, Benediktsson JA, Chanussot J (2009) Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans Geosci Remote Sens 47(8):2973–2987
Tarabalka Y, Chanussot J, Benediktsson JA (2010a) Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recogn 43(7):2367–2379
Tarabalka Y, Chanussot J, Benediktsson JA (2010b) Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers. IEEE Trans Syst Man Cybern Part B (Cybern) 40(5):1267–1279
Tian Q, Chen S (2017) Cross-heterogeneous-database age estimation through correlation representation learning. Neurocomputing 238:286–295
Velasco-Forero S, Angulo J (2013) Classification of hyperspectral images by tensor modeling and additive morphological decomposition. Pattern Recogn 46(2):566–577
Wang J, Jiao L, Wang S, Hou B, Liu F (2016) Adaptive nonlocal spatial–spectral kernel for hyperspectral imagery classification. IEEE J Sel Top Appl Earth Observ Remote Sens 9(9):4086–4101
Wang B, Gu X, Ma L, Yan S (2017) Temperature error correction based on BP neural network in meteorological wireless sensor network. Int J Sens Netw 23(4):265–278
Wu Z, Wang Q, Plaza A, Li J, Sun L, Wei Z (2015) Real-time implementation of the sparse multinomial logistic regression for hyperspectral image classification on GPUs. IEEE Geosci Remote Sens Lett 12(7):1456–1460
Xia J, Bombrun L, Adalı T, Berthoumieu Y, Germain C (2016) Spectral–spatial classification of hyperspectral images using ica and edge-preserving filter via an ensemble strategy. IEEE Trans Geosci Remote Sens 54(8):4971–4982
Xu Y, Wu Z, Wei Z (2015) Spectral–spatial classification of hyperspectral image based on low-rank decomposition. IEEE J Sel Top Appl Earth Observ Remote Sens 8(6):2370–2380
Yang S, Shi Z (2016) Hyperspectral image target detection improvement based on total variation. IEEE Trans Image Process 25(5):224–2258
Yu N, Yu Z, Gu F, Li T, Tian X, Pan Y (2017) Deep learning in genomic and medical image data analysis: challenges and approaches. J Inf Process Syst 13(2):204–214
Zhang H, Li J, Huang Y, Zhang L (2014) A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2056–2065
Zhang M, Ran Q, Li W, Liu K (2015) Sparse representation and smooth filtering for hyperspectral image classification. International Conference on Intelligent Earth Observing and Applications. International Society for Optics and Photonics, pp 98083P–98083P-13
Zhang E, Jiao L, Zhang X, Liu H, Wang S (2016) Class-level joint sparse representation for multifeature-based hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 9(9):4160–4177
Zhang S, Li S, Fu W, Fang L (2017) Multiscale superpixel-based sparse representation for hyperspectral image classification. Remote Sens 9(2):139
Zhao W, Du S (2016) Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens 54(8):4544–4554
Acknowledgements
This work was supported by the Natural Science Foundation of Jiangsu Province and China (BK20150923, 61601236, 61602423, 61402235), the PAPD fund and the NRF grants (NRF-2016R1D1A1B03934305, NRF-2017R1A2B2006518) and the Korean Research Fellowship Program (NRF-2015H1D3A1036067) both through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sun, L., Wang, S., Wang, J. et al. Hyperspectral classification employing spatial–spectral low rank representation in hidden fields. J Ambient Intell Human Comput 15, 1505–1516 (2024). https://doi.org/10.1007/s12652-017-0586-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-017-0586-1