Skip to main content
Log in

Hyperspectral classification employing spatial–spectral low rank representation in hidden fields

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

This paper presents a novel classification method based on spatial–spectral low-rank representation in the hidden field under a Bayesian framework for hyperspectral imagery. The key idea of the method is to simultaneously explore the low-rank property in the spectral domain and nonlocal self-similarity in the spatial domain of the hidden field, which is estimated by sparse multinomial logistic regression in a supervised manner. First, the low rank property in the spectral domain is exploited in local cubic patches. Following this, similar cubic patches are clustered into several groups in a nonlocal sense and patches in each group are assumed to lie in a low-rank subspace. The final model could be efficiently solved by the augmented Lagrangian method. Experimental results on two real hyperspectral datasets validate that the proposed classifier produces a superior performance compared to other state-of-the-art classifiers in terms of overall accuracy, average accuracy and the kappa statistic (k).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bioucas-Dias J, Condessa F, Kovačević J (2014) Alternating direction optimization for image segmentation using hidden Markov measure field models. In: IS&T/SPIE Electronic Imaging, pp 90190P–90190P

  • Camps-Valls G, Gomez-Chova L, Muñoz-Marí J, Vila-Frances J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97

    Article  ADS  Google Scholar 

  • Camps-Valls G, Shervashidze N, Borgwardt KM (2010) Spatio-spectral remote sensing image classification with graph kernels. IEEE Geosci Remote Sens Lett 7(4):741–745

    Article  ADS  Google Scholar 

  • Cao X, Xu L, Meng D, Zhao Q, Xu Z (2017) Integration of 3-dimensional discrete wavelet transform and Markov random field for hyperspectral image classification. Neurocomputing 226:90–100

    Article  Google Scholar 

  • Chen Y, Nasrabadi NM, Tran TD (2011) Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans Geosci Remote Sens 49(10):3973–3985

    Article  ADS  Google Scholar 

  • Chen Y, Nasrabadi NM, Tran TD (2013) Hyperspectral image classification via kernel sparse representation. IEEE Trans Geosci Remote Sens 51(1):217–231

    Article  ADS  Google Scholar 

  • Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2094–2107

    Article  ADS  Google Scholar 

  • Chutia D, Bhattacharyya DK, Sarma KK, Kalita R, Sudhakar S (2016) Hyperspectral remote sensing classifications: a perspective survey. Trans GIS 20(4):463–490

    Article  Google Scholar 

  • Condessa F, Bioucas-Dias J, Kovacevic J (2015) SegSALSA-STR: a convex formulation to supervised hyperspectral image segmentation using hidden fields and structure tensor regularization. arXiv:1504.07028(preprint)

  • Dalla Mura M, Benediktsson JA, Waske B (2010) Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans Geosci Remote Sens 48(10):3747–3762

    Article  ADS  Google Scholar 

  • Fang L, Li S, Kang X, Benediktsson JA (2014) Spectral–spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans Geosci Remote Sens 52(12):7738–7749

    Article  ADS  Google Scholar 

  • Feng X, Li Q (2014) Hyperspectral image classification based on 3-D gabor filter and support vector machines. Spectrosc Spectr Anal 34(8):2218–2224

    CAS  Google Scholar 

  • Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416

    Article  MathSciNet  PubMed  Google Scholar 

  • Gu S, Xie Q, Meng D, Zuo W, Feng X, Zhang L (2017) Weighted nuclear norm minimization and its applications to low level vision. Int J Comp Vis 121(2):183–208

    Article  Google Scholar 

  • Guo B, Gunn SR, Damper RI, Nelson JD (2006) Band selection for hyperspectral image classification using mutual information. IEEE Geosci Remote Sens Lett 3(4):522–526

    Article  ADS  Google Scholar 

  • He Z, Liu L, Deng R, Shen Y (2016) Low-rank group inspired dictionary learning for hyperspectral image classification. Signal Process 120:209–221

    Article  Google Scholar 

  • He L, Li J, Plaza A, Li Y (2017) Discriminative low-rank Gabor filtering for spectral–spatial hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(3):1381–1395

    Article  ADS  Google Scholar 

  • Jia S, Ji Z, Qian Y, Shen L (2012) Unsupervised band selection for hyperspectral imagery classification without manual band removal. IEEE J Sel Top Appl Earth Observ Remote Sens 5(2):531–543

    Article  ADS  Google Scholar 

  • Jia S, Shen L, Li Q (2015) Gabor feature-based collaborative representation for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 53(2):1118–1129

    Article  ADS  Google Scholar 

  • Li W, Tramel EW, Prasad S, Fowler JE (2014a) Nearest regularized subspace for hyperspectral classification. IEEE Trans Geosci Remote Sens 52(1):477–489

    Article  ADS  Google Scholar 

  • Li J, Zhang H, Zhang L (2014b) Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification. ISPRS J Photogramm Remote Sens 94:25–36

    Article  ADS  Google Scholar 

  • Li W, Du Q, Zhang F, Hu W (2015a) Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery. IEEE Geosci Remote Sens Lett 12(2):389–393

    Article  ADS  Google Scholar 

  • Li W, Du Q, Xiong M (2015b) Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification. IEEE Geosci Remote Sens Lett 12(1):48–52

    Article  Google Scholar 

  • Li C, Ma Y, Huang J, Mei X, Ma J (2015c) Hyperspectral image denoising using the robust low-rank tensor recovery. JOSAA 32(9):1604–1612

    Article  ADS  Google Scholar 

  • Li J, Zhang H, Zhang L (2015d) Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification. IEEE Trans Geosci Remote Sens 53(10):5338–5351

    Article  ADS  Google Scholar 

  • Li W, Du Q, Zhang F, Hu W (2016a) Hyperspectral image classification by fusing collaborative and sparse representations. IEEE J Sel Top Appl Earth Observ Remote Sens 9(9):4178–4187

    Article  ADS  Google Scholar 

  • Li J, Kong Y, Zhao H, Yang J, Fu Y (2016b) Learning fast low-rank projection for image classification. IEEE Trans Image Process 25(10):4803–4814

    Article  MathSciNet  ADS  Google Scholar 

  • Li J, Liu F, Zhao H, Fu Y (2017) Projective low-rank subspace clustering via learning deep encoder. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence, pp 2145–2151

  • Liu Y, Cibdessa F, Bioucas-Dias J, Li J, Plaza A (2016a) Convex formulation for hyperspectral image classification with superpixels segmentation. In: Proceedings of IGARSS, pp 3294–3297

  • Liu J, Wu Z, Li J, Plaza A, Yuan Y (2016b) Probabilistic-kernel collaborative representation for spatial–spectral hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(4):2371–2384

    Article  ADS  Google Scholar 

  • Mei S, Bi Q, Ji J, Hou J, Du Q (2017) Hyperspectral image classification by exploring low-rank property in spectral or/and spatial domain. IEEE J Sel Top Appl Earth Observ Remote Sens

  • Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Article  ADS  Google Scholar 

  • Moroni M, Lupo E, Marra E, Cenedese A (2013) Hyperspectral image analysis in environmental monitoring: setup of a new tunable filter platform. Procedia Environ Sci 19:885–894

    Article  Google Scholar 

  • Pan B, Shi Z, Xu X (2017) R-VCANet: a new deep-learning-based hyperspectral image classification method. IEEE J Sel Top Appl Earth Observ Remote Sens 10(5):1975–1986

    Article  ADS  Google Scholar 

  • Prabusankarlal KM, Thirumoorthy P, Manavalan R (2015) Assessment of combined textural and morphological features for diagnosis of breast masses in ultrasound. Hum Centr Comput Inf Sci 5(1):1–17

    Google Scholar 

  • Qi R, Zhang Y, Li H (2017) Block sparse signals recovery via block backtracking-based matching pursuit method. J Inf Process Syst 13(2):360–369

    Google Scholar 

  • Sahoo RN, Ray SS, Manjunath KR (2015) Hyperspectral remote sensing of agriculture. Curr Sci 108(5):847–859

    Google Scholar 

  • Shahshahani BM, Landgrebe DA (1994) The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans Geosci Remote Sens 32(5):1087–1095

    Article  ADS  Google Scholar 

  • Sun Y, Gu F (2017) Compressive sensing of piezoelectric sensor response signal for phased array structural health monitoring. Int J Sens Netw 23(4):258–264

    Article  Google Scholar 

  • Sun L, Wu Z, Liu J, Xiao L, Wei Z (2015a) Supervised spectral–spatial hyperspectral image classification with weighted Markov random fields. IEEE Trans Geosci Remote Sens 53(3):1490–1503

    Article  ADS  Google Scholar 

  • Sun L, Shim HJ, Jeon B, Zheng Y, Chen Y, Xiao L, Wei Z (2015b) Hyperspectral image classification using multinomial logistic regression and non-local prior on hidden fields. In: Proceedings of PIC, pp 1–4

  • Sun L, Jeon B, Zheng Y, Wu Z (2017a) Homogeneous region based low rank representation in hidden field for hyperspectral classification. In: Proceedings of IGARSS, pp 1–4

  • Sun L, Jeon B, Zheng Y, Wu Z (2017b) Hyperspectral image restoration using low-rank representation on spectral difference image. IEEE Geosci Remote Sens Lett 14(7):1151–1555

    Article  ADS  Google Scholar 

  • Tarabalka Y, Benediktsson JA, Chanussot J (2009) Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans Geosci Remote Sens 47(8):2973–2987

    Article  ADS  Google Scholar 

  • Tarabalka Y, Chanussot J, Benediktsson JA (2010a) Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recogn 43(7):2367–2379

    Article  ADS  Google Scholar 

  • Tarabalka Y, Chanussot J, Benediktsson JA (2010b) Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers. IEEE Trans Syst Man Cybern Part B (Cybern) 40(5):1267–1279

    Article  Google Scholar 

  • Tian Q, Chen S (2017) Cross-heterogeneous-database age estimation through correlation representation learning. Neurocomputing 238:286–295

    Article  Google Scholar 

  • Velasco-Forero S, Angulo J (2013) Classification of hyperspectral images by tensor modeling and additive morphological decomposition. Pattern Recogn 46(2):566–577

    Article  ADS  Google Scholar 

  • Wang J, Jiao L, Wang S, Hou B, Liu F (2016) Adaptive nonlocal spatial–spectral kernel for hyperspectral imagery classification. IEEE J Sel Top Appl Earth Observ Remote Sens 9(9):4086–4101

    Article  ADS  Google Scholar 

  • Wang B, Gu X, Ma L, Yan S (2017) Temperature error correction based on BP neural network in meteorological wireless sensor network. Int J Sens Netw 23(4):265–278

    Article  Google Scholar 

  • Wu Z, Wang Q, Plaza A, Li J, Sun L, Wei Z (2015) Real-time implementation of the sparse multinomial logistic regression for hyperspectral image classification on GPUs. IEEE Geosci Remote Sens Lett 12(7):1456–1460

    Article  ADS  Google Scholar 

  • Xia J, Bombrun L, Adalı T, Berthoumieu Y, Germain C (2016) Spectral–spatial classification of hyperspectral images using ica and edge-preserving filter via an ensemble strategy. IEEE Trans Geosci Remote Sens 54(8):4971–4982

    Article  ADS  Google Scholar 

  • Xu Y, Wu Z, Wei Z (2015) Spectral–spatial classification of hyperspectral image based on low-rank decomposition. IEEE J Sel Top Appl Earth Observ Remote Sens 8(6):2370–2380

    Article  ADS  Google Scholar 

  • Yang S, Shi Z (2016) Hyperspectral image target detection improvement based on total variation. IEEE Trans Image Process 25(5):224–2258

    Article  MathSciNet  Google Scholar 

  • Yu N, Yu Z, Gu F, Li T, Tian X, Pan Y (2017) Deep learning in genomic and medical image data analysis: challenges and approaches. J Inf Process Syst 13(2):204–214

    Google Scholar 

  • Zhang H, Li J, Huang Y, Zhang L (2014) A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2056–2065

    Article  ADS  Google Scholar 

  • Zhang M, Ran Q, Li W, Liu K (2015) Sparse representation and smooth filtering for hyperspectral image classification. International Conference on Intelligent Earth Observing and Applications. International Society for Optics and Photonics, pp 98083P–98083P-13

  • Zhang E, Jiao L, Zhang X, Liu H, Wang S (2016) Class-level joint sparse representation for multifeature-based hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 9(9):4160–4177

    Article  ADS  Google Scholar 

  • Zhang S, Li S, Fu W, Fang L (2017) Multiscale superpixel-based sparse representation for hyperspectral image classification. Remote Sens 9(2):139

    Article  CAS  ADS  Google Scholar 

  • Zhao W, Du S (2016) Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens 54(8):4544–4554

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province and China (BK20150923, 61601236, 61602423, 61402235), the PAPD fund and the NRF grants (NRF-2016R1D1A1B03934305, NRF-2017R1A2B2006518) and the Korean Research Fellowship Program (NRF-2015H1D3A1036067) both through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeungwoo Jeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Wang, S., Wang, J. et al. Hyperspectral classification employing spatial–spectral low rank representation in hidden fields. J Ambient Intell Human Comput 15, 1505–1516 (2024). https://doi.org/10.1007/s12652-017-0586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-017-0586-1

Keywords