Skip to main content
Log in

Ubiquitous single-sample face recognition under occlusion based on sparse representation with dual features

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Face recognition has attracted numerous research interests as a promising biometrics with many distinct advantages. However there are inevitable gaps lying between face recognition in lab condition and ubiquitous face recognition application in real word, which mainly caused by various illumination condition, random occlusion, lack of sample images and etc. To combat the influence of these impact factors, a novel dual features based sparse representation classification algorithm is proposed. It contains illumination robust feature based dictionary learning and fused sparse representation with dual features. Firstly, an enhanced center-symmetric local binary pattern (ECSLBP) derived from conducting center symmetric encoding on the fused component images is presented for dictionary construction. Then, sparse representation with dual features including both ECSLBP and CSLBP is conducted. The final recognition is derived from the fusion of both classification results according to a novel fusion scheme. Numerous experiments results on both Extended Yale B database and the AR database show that the proposed algorithm exhibits distinguished discriminative ability and state-of-the-art recognition rate compared with other existing algorithms, especially for single sample face recognition under random partial occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041. doi:10.1109/TPAMI.2006.244

    Article  PubMed  Google Scholar 

  • Ashraf AB, Simon L, Tsuhan C (2010) Reinterpreting the application of Gabor filters as a manipulation of the margin in linear support vector machines. IEEE Trans Pattern Anal Mach Intell 32(7):1335–1341. doi:10.1109/TPAMI.2010.75

    Article  PubMed  Google Scholar 

  • Blanco-Gonzalo R, Poh N, Wong R et al (2015) Time evolution of face recognition in accessible scenarios. Human-Centric Comput Inf Sci 5:24. doi:10.1186/s13673-015-0043-0

    Article  Google Scholar 

  • Blanz V, Vetter T (2003) Face recognition based on fitting a 3d morphable model. IEEE Trans Pattern Anal Mach Intell 25(9):1063–1074. doi:10.1109/TPAMI.2003.1227983

    Article  Google Scholar 

  • Gao SH, Jia K, Zhuang LS, Ma Y (2015) Neither global nor local: regularized patchbased representation for single sample per person face recognition. Int J Comput Vis 111(3):365383. doi:10.1007/s11263-014-0750-4

    Article  Google Scholar 

  • Georghiades AS, Belhumeur PN (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Patt Anal Mach Intell 23(6):643–660. doi:10.1109/34.927464

    Article  Google Scholar 

  • He R, Zheng WS, Hu BG (2011) Maximum correntropy criterion for robust face recognition. IEEE Trans Pattern Anal Mach Intell 33(8):15611576. doi:10.1109/TPAMI.2010.220

    Article  Google Scholar 

  • Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20. doi:10.1109/TCSVT.2003.818349

    Article  Google Scholar 

  • Jiang ZL, Davis LS (2011) Learning a discriminative dictionary for sparse coding via label consistent K-SVD. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 1697–1704. doi:10.1109/CVPR.2011.5995354

  • Khan SU, Chai WY, See CS, Khan A (2016) X-ray image enhancement using a boundary division wiener filter and wavelet-based image fusion approach. J Inf Process Syst 12(1):35–45. doi:10.3745/JIPS.02.0029

    Article  Google Scholar 

  • Lei L, Kim DH, Park WJ, Ko SJ (2014a) Face recognition using LBP Eigenfaces. IEICE Trans Inf Syst 97(7):1930–1932. doi:10.1587/transinf.E97.D.1930

    Article  Google Scholar 

  • Lei Z, Pietikainen M, Li SZ (2014b) Learning discriminant face descriptor. IEEE Trans Pattern Anal Mach Intell 36(2):289302. doi:10.1109/TPAMI.2013.112

    Article  Google Scholar 

  • Liao S, Yi D, Lei Z, Qin R, Li SZ (2009) Heterogeneous face recognition from local structures of normalized appearance. Lecture Notes in Computer Science pp 209218. doi:10.1007/978-3-642-01793-3_22

  • Liu XZ, Feng GC (2013) Multiple kernel learning in fisher discriminant analysis for face recognition. Int J Adv Robot Syst 10(142). doi:10.5772/52350

  • Liu XZ, Wang PSP, Feng GC (2013) Kernel based 2D fisher discriminant analysis with parameter optimization for face recognition. Int J Pattern Recogn Artif Intell 27(8). doi:10.1142/S0218001413560107

  • Liu XZ, Ye HW (2015) Dual-Kernel based on 2D linear discriminant analysis for face recognition. J Ambient Intell Human Comput 6(5):557–562. doi:10.1007/s12652-014-0230-2

  • Martinez AM (1998) The ar face database. Cve Technical Report 24

  • Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vision 60(1):6386. doi:10.1023/B:VISI.000002-7790.02288.f2

    Article  Google Scholar 

  • Qiao LS, Chen SC, Tan XY (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331341. doi:10.1016/j.patcog.2009.05.005

    Article  Google Scholar 

  • Ramirez-Gutierrez K, Cruz-Perpz D, Olivares-Mercado J et al (2011) A face recognition algorithm using eigenphases and histogram equalization. Int J Comput 5(1):3441

    Google Scholar 

  • Reza D, Saeed M, Khashayar Y (2016) Perceptual image hashing using center-symmetric local binary patterns. Multimed Tools Appl 75:4639–4667. doi:10.1007/s11042-015-2496-6

    Article  Google Scholar 

  • Ruan Y, Chen HW, Liu ZH (2014) Quantum principal component analysis algorithm. Chin J Comput 37(3):666–676. doi:10.3724/SP.J.1016.2014.00666

    Article  Google Scholar 

  • Shan S, Gao W, Cao B, Zhao D (2003) Illumination normalization for robust face recognition against varying lighting conditions. In: Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures, pp 157–164

  • Shim H, Luo J, Chen T (2008) A subspace model-based approach to face relighting under unknown lighting and poses. IEEE Trans Image Process 17(8):13311341. doi:10.1109/TIP.2008.925390

    Article  MathSciNet  Google Scholar 

  • Song W, Sun GD, Simon F, Kyung-Eun C (2016) A real-time infrared LED detection method for input signal positioning of interactive media. J Converg 7. Article ID 16071002

  • Tai Y, Yang J, Luo L, Zhang FL, Qian JJ (2016) Learning discriminative singular value decomposition representation for face recognition. Pattern Recognit 50(C):116. doi:10.1016/j.patcog.2015.08.010

  • Tan XY, Chen SC, Zhou ZH, Liu J (2009) Face recognition under occlusions and variant expressions with partial similarity. IEEE Trans Inf Forensics Secur 4(2):217230. doi:10.1109/TIFS.2009.2020772

    Article  Google Scholar 

  • Wang D, Lu HH, Yang MH (2015) Kernel collaborative face recognition. Pattern Recogn 48(10):30253037. doi:10.1016/j.patcog.2015.01.012

    Article  Google Scholar 

  • Wen YD, Liu WY, Yang M, Fu YL, Xiang YJ, Hu R (2016) Structured occlusion coding for robust face recognition. Neurocomputing 178:11–24. doi:10.1016/j.neucom.2015.05.132

    Article  Google Scholar 

  • Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210227

    Article  Google Scholar 

  • Yang M, Zhang L (2010) Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In: Proceedings of European Conference on Computer Vision, Springer, pp 448–461. doi:10.1007/978-3-642-15567-3_33

  • Yang M, Zhu P, Liu F, Shen LL (2015) Joint representation and pattern learning for robust face recognition. Neurocomputing 168:7080. doi:10.1016/j.neucom.2015.06.013

    Article  Google Scholar 

  • Yu YF, Dai DQ, Ren CX, Huang KK (2017) Discriminative multi-scale sparse coding for single-sample face recognition with occlusion. Pattern Recogn 66:302–312. doi:10.1016/j.patcog.2017.01.021

    Article  ADS  Google Scholar 

  • Yuan L, Li C, Z Mu C (2012) Ear recognition under partial occlusion based on sparse representation. In: Proceedings of the 2012 International Conference on System Science and Engineering, Dalian, China, pp 349–352. doi:10.1109/ICSSE.2012.6257205

  • Yuan L, Liu W, Li Y (2016) Non-negative dictionary based sparse representation classification for ear recognition with occlusion. Neurocomputing 171:540–550. doi:10.1016/j.neucom.2015.06.074

  • Yuan L, Mu ZC (2012) Ear recognition based on local information fusion. Pattern Recog Lett 33(2):182190. doi:10.1016/j.patrec.2011.09.041

    Article  Google Scholar 

  • Zhang BQ, Mu ZC, Li C, Zeng H (2014) Robust classification for occluded ear via gabor scale feature based on negative sparse representation. Opt Eng 53(6):061702–061702. doi:10.1117/1.OE.53.6.061702

    Article  ADS  Google Scholar 

  • Zhang GC, Huang XS, Li SZ, Wang YS, Wu XH (2004) Boosting local binary pattern (LBP)-based face recognition. In: Conference on advances in biometric person authentication, pp 179–186. doi:10.1007/978-3-540-30548-4_21

  • Zhou ZH, Wagner A, Mobahi H, Wright J, Ma Y (2009) Face recognition with contiguous occlusion using Markov random fields. In: Proceedings of international conference on computer vision, pp 1050–1057. doi:10.1109/ICCV.2009.5459383

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China under Grant 2017YFB0802300, National Natural Foundation of China (Grant No. 61503005), Research Project of Beijing Municipal Education Commission (Grant No. SQKM201810009005) and High Innovation Program of Beijing (2015000026833ZK04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Li or Wei Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhao, S., Song, W. et al. Ubiquitous single-sample face recognition under occlusion based on sparse representation with dual features. J Ambient Intell Human Comput 15, 1493–1503 (2024). https://doi.org/10.1007/s12652-017-0604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-017-0604-3

Keywords

Navigation