Skip to main content
Log in

Natural language interface model for the evaluation of ergonomic routines in occupational health (ILENA)

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

This article presents research done on a joint assessment model, including physiotherapy and computer and vector concepts, to achieve a natural language interface prototype creation that captures occupational health movements by performing an upper extremities rating in workers in computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Achcar JA, Rodrigues J (2000) Introdução à estatstica para ciências e tecnologia. ICMC/USP

  • Alonso-Virgos L, Espada P, Rodríguez J, Baena L, Crespo RG (2017) Design specific user interfaces for people with down syndrome using suitable WCAG 2.0 guidelines. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0539-8

    Google Scholar 

  • Altman P (2013) Using MS Kinect device for natural user interface. Master’s Thesis, University of West Bohemia

  • Barreiro M, Frere A, Theodorio N, Amate F (2003) Goniometer based to computer. In Engineering in Medicine and Biology Society, 2003. In: Proceedings of the 25th annual international conference of the IEEE, vol 4, pp 3290–3293, Cancun, Mexico. IEEE. https://doi.org/10.1109/IEMBS.2003.1280847

  • Benhumea SHP (2012) Interfaz de lenguaje natural usando kinect. Master’s Thesis, Unidad Zacatenco Departamento de Computación, México, Distrito Federal

  • Bolanos S, Gonzalez Crespo R, Espada G, García-Díaz V, Osis J (2016) Softwareland chronicles: a software development meta-process proposal. Appl Comput Syst 19(1):5–14. https://doi.org/10.1515/acss-2016-0001

    Article  Google Scholar 

  • Bolanos-Castro JS, Gonzalez Crespo R, Medina-Garcia HV (2011) Patterns of software development process. Int J Interact Multimed Artif Intell 1:33–40. https://doi.org/10.9781/ijimai.2011.146

    Google Scholar 

  • Cover T, Hart P (2006) Nearest neighbor pattern classification. IEEE Trans Inf Theor 13(1):21–27. https://doi.org/10.1109/TIT.1967.1053964

    Article  MATH  Google Scholar 

  • De Castilla y Leon JA, Obreras de Castilla y Leon C (2008) Manual de trastornos musculoesqueléticos. Secretaria de Salud Laboral CC.OO. Castilla y León

    Google Scholar 

  • De la Salud OM (2017) Índice de masa corporal. http://www.who.int.es/. Accessed 1 Sept 2017

  • For Disease Control C and Prevention (2017) Normal joint range of motion study. Centers for Disease Control and Prevention. https://www.cdc.gov/ncbddd/jointrom/. Accessed 10 Nov 2017

  • Gallo L, Placitelli A, Ciampi M (2011) Controller-free exploration of medical image data: experiencing the kinect. In: Computer-based medical systems (CBMS), 2011 24th international symposium on, pp 1–6. https://doi.org/10.1109/CBMS.2011.5999138

  • Magdin M, Prikler F (2018) Real time facial expression recognition using webcam and sdk affectiva. Int J Interact Multimed Artif Intell. https://doi.org/10.9781/ijimai.2017.11.002

    Google Scholar 

  • Microsoft (2013) Kinect for windows human interface guidelines v1.8.0. Microsoft Developer Network

  • Microsoft (2015) Kinect for windows. Microsoft Developer Network

  • Moore SJ, Garg A (1995) The Strain Index: a proposed method to analyze jobs for risk of distal upper extremity disorders. Am Ind Hyg Assoc J 56:443–458. https://doi.org/10.1080/15428119591016863

    Article  Google Scholar 

  • Ojeda LR (2007) Probabilidad y estadística básica para ingenieros. Escuela superior politécnica del litoral

  • Ortiz A, Gutierrez J, Barraza F, Delgado R, Nunez M, Aguirre H (2011) Design of a sensor for measuring range of motion of the hand. Health Care Exchanges (PAHCE), 2011 Pan American, pp 29–32. https://doi.org/10.1109/PAHCE.2011.5871839

  • Parashar A, Parashar A, Goyal S (2016) Push recovery for humanoid robot in dynamic environment and classifying the data using k-mean. Int J Interact Multimed Artif Intell 4(2):29–34. https://doi.org/10.9781/ijimai.2016.425

    Google Scholar 

  • Ross W (1985) The phantom stratagem for proportional growth assessment: questions and answers. Hum Biol 16:156–167

    Google Scholar 

  • Silverman BW, Jones MC, Fix E, Hodges JL (1989) E. Fix and J. L. Hodges (1951): an important contribution to nonparametric discriminant analysis and density estimation: commentary on Fix and Hodges (1951). Int Stat Rev 57(3):233–238

    Article  MATH  Google Scholar 

  • Stanley D (2013) Measuring attention using Microsoft Kinect. Master’s Thesis, Rochester Institute of Technology

  • Stevens P, Pooley P, Fernández-Alarcón M, González-Crespo R (2007) Utilización de UML en ingeniería del software con objetos y componentes. Pearson Addison Wesley, Boston

    Google Scholar 

  • Systems C (2014) Cyber glove II. http://www.cyberglovesystems.com/cyberglove-ii/. Accessed 30 Aug 2017

  • Taboadela C (2007) Goniometría: una herramienta para la evaluación de las incapacidades laborales. ASOCIART SA ART ©

  • Verdú E, Bustelo CPG, Sánchez MÁM, Crespo RG (2017) A system to generate signwriting for video tracks enhancing accessibility of deaf people. Int J Interact Multimed Artif Intell 4(6):109–115. https://doi.org/10.9781/ijimai.2017.09.002

    Google Scholar 

  • Wang J, Liu Z, Wu Y, Yuan J (2012) Mining action let ensemble for action recognition with depth cameras. In: Computer vision and pattern recognition (CVPR), 2012 IEEE conference on, pp 1290–1297. https://doi.org/10.1109/CVPR.2012.6247813

  • Weinberger KQ, Blitzer J, Saul LK (2006) Distance metric learning for large margin nearest neighbor classification. Adv Neural Inf Process Syst 18:1473–1480. https://doi.org/10.1109/CVPR.2012.6247813

    Google Scholar 

  • Xiao Y, Yuan J, Thalmann D (2013) Human-virtual human interaction by upper body gesture understanding. In: VRST’13 proceedings of the 19th ACM symposium on virtual reality software and technology, pp 133–142. ACM. https://doi.org/10.1145/2503713.2503727

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben González Crespo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jutinico, C.J.M., Montenegro-Marin, C.E., Burgos, D. et al. Natural language interface model for the evaluation of ergonomic routines in occupational health (ILENA). J Ambient Intell Human Comput 10, 1611–1619 (2019). https://doi.org/10.1007/s12652-018-0770-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-0770-y

Keywords

Navigation