Skip to main content

Advertisement

Log in

A cloud-terminal-based cyber-physical system architecture for energy efficient machining process optimization

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

An innovative cloud-terminal-based cyber-physical system (CTCPS) architecture is presented to support energy efficient machining process optimization. The CTCPS consists of four levels: machine level, control level, data level and decision support level. The machine level and control level are composed of all kinds of terminals related to machining process and mainly responsible for monitoring machines and controlling machines to execute the optimal solutions. The data level and decision support level are deployed in cloud for data storage, management and analysis and optimization. Experiments on the practical case shows that the CTCPS is promising and has significant potential of implementation in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anand Y, Gupta A, Abrol A, Gupta Y, Kumar V, Tyagi S (2016) Optimization of machining parameters for green manufacturing. Cogent Eng 3(1):1–16. https://doi.org/10.1080/23311916.2016.1153292

    Article  Google Scholar 

  • Aramcharoen A, Mativenga P (2014) Critical factors in energy demand modelling for CNC milling and impact of toolpath strategy. J Clean Prod 78:63–74

    Article  Google Scholar 

  • Artigues C, Lopez P, Hait A (2013) The energy scheduling problem: industrial case-study and constraint propagation techniques. Int J Prod Econ 143(1):13–23

    Article  Google Scholar 

  • Avram O, Xirouchakis P (2011) Evaluating the use phase energy requirements of a machine tool system. J Clean Prod 19:699–711

    Article  Google Scholar 

  • Bilga P, Singh S, Kumar R (2016) Optimization of energy consumption response parameters for turning operation using Taguchi method. J Clean Prod 137:1406–1417

    Article  Google Scholar 

  • Campatelli G, Lorenzini L, Scippa A (2014) Optimization of process parameters using a response surface method for minimizing power consumption in the milling of carbon steel. J Clean Prod 2014 66:309–316

    Article  Google Scholar 

  • Camposeco-Negrete C (2013) Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. J Clean Prod 53(16):195–203

    Article  Google Scholar 

  • Chen Y, He F, Wu Y, Hou N (2017) A local start search algorithm to compute exact Hausdorff distance for arbitrary point sets. Pattern Recognit 67:139–148

    Article  Google Scholar 

  • Choi Y, Paul X (2014) Production planning in highly automated manufacturing system considering multiple process plans with different energy requirements. Int J Adv Manuf Technol 70(9):853–867

    Article  Google Scholar 

  • Dai M, Tang D, Giret A, Salido M, L i W (2013) Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robot Comp Integr Manuf 29(5):418–429

    Article  Google Scholar 

  • Dai M, Tang D, Xu Y, Li W (2015) Energy-aware integrated process planning and scheduling for job shops. Proc Inst Mech Eng Part B J Eng Manuf 229(1):13–26

    Article  Google Scholar 

  • Diaz N, Redelsheimer E, Dornfeld D (2011) Energy consumption characterization and reduction strategies for milling machine tool use. In: Proceedings of the 18th CIRP international conference on life cycle engineering globalized solutions for sustainability in manufacturing, pp 263–267. https://doi.org/10.1007/978-3-642-19692-8_46

  • Fang K, Lin B (2013) Parallel-machine scheduling to minimize tardiness penalty and power cost. Comput Ind Eng 64(1):224–234

    Article  Google Scholar 

  • Fratila D, Caiza C (2011) Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg3. J Clean Prod 19(6):640–645

    Article  Google Scholar 

  • Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. In: 13th CIRP international conference on life cycle engineering, vol 31, pp 623–638

  • Hanafi I, Khamlichi A, Cabrera F, Almansa E, Jabbouri A (2012) Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools. J Clean Prod 33:1–9

    Article  Google Scholar 

  • Hu S, Liu F, He Y, Hu T (2012) An on-line approach for energy efficiency monitoring of machine tools. J Clean Prod 27:133–140

    Article  Google Scholar 

  • Huang X, Yin C, Dadras S, Cheng Y, Bai L (2017) Adaptive rapid defect identification in ECPT based on K-means and automatic segmentation algorithm. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0671-5

    Article  Google Scholar 

  • Jania A, Magdiel P (2017) Industry 4.0 framework for management and operations: a review. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0533-1

    Article  Google Scholar 

  • Kant G, Sangwan K (2014) Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining. J Clean Prod 83:151–164

    Article  Google Scholar 

  • Kara S, Li W (2011) Unit process energy consumption models for material removal processes. CIRP Ann Manuf Technol 60(1):37–40

    Article  Google Scholar 

  • Kong D, Choi S, Yasui Y, Pavanaskar S, Dornfeld D, Wright P (2011) Software-based tool path evaluation for environmental sustainability. J Manuf Syst 30(4):241–247

    Article  Google Scholar 

  • Kuram E, Ozcelik B, Bayramoglu M, Demirbas E, Simsek B (2013) Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. J Clean Prod 42(3):159–166

    Article  Google Scholar 

  • Kusiak A (2017) Smart manufacturing must embrace big data. Nature 544:23–25

    Article  Google Scholar 

  • Le C, Pang C (2013) Fast reactive scheduling to minimize tardiness penalty and energy cost under power consumption uncertainties. Comput Ind Eng 66(2):406–417

    Article  Google Scholar 

  • Lee C, Hsieh K, Hsieh S, Hsiao H (2014) A dynamic data placement strategy for Hadoop in heterogeneous environments. Big Data Res 1:14–22

    Article  Google Scholar 

  • Li W, McMahon C (2007) A simulated annealing-based optimization approach for integrated process planning and scheduling. Int J Comput Integr Manuf 20(1):80–95

    Article  Google Scholar 

  • Li L, Yan J, Xing Z (2013) Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modeling. J Clean Prod 52:113–121

    Article  Google Scholar 

  • Li J, Tao F, Cheng Y, Zhao L (2015a) Big data in product lifecycle management. Int J Adv Manuf Technol 81(1):667–684

    Article  Google Scholar 

  • Li X, Li W, Cai X, He F (2015b) A hybrid optimization approach for sustainable process planning and scheduling. Integr Comput Aided Eng 22(4):311–326

    Article  Google Scholar 

  • Li C, Chen X, Tang Y, Li L (2016) Selection of optimum parameters in multipass face milling for maximum energy efficiency and minimum production cost. J Clean Prod 140:1805–1818

    Article  Google Scholar 

  • Li K, He F, Yu H, Chen X (2017a) A correlative classifiers approach based on particle filter and sample set for tracking occluded target. Appl Math A J Chin Univ 32(3):294–312

    Article  MathSciNet  Google Scholar 

  • Li L, Li Y, Tang Y (2017b) Influence factors and operational strategies for energy efficiency improvement of CNC machining. J Clean Prod 161:220–238

    Article  Google Scholar 

  • Li K, He F, Yu H, Chen X (2018a) A parallel and robust object tracking approach synthesizing adaptive bayesian learning and improved incremental subspace learning. Front Comput Sci. https://doi.org/10.1007/s11704-018-6442-4

    Article  Google Scholar 

  • Li K, He F, Yu H (2018b) Robust visual tracking based on convolutional features with illumination and occlusion handling. J Comput Sci Technol 33(1):223–236

    Article  Google Scholar 

  • Li X, Li W, He F (2018c) A multi-granularity NC program optimization approach for energy efficient machining. Adv Eng Softw 115:75–86

    Article  Google Scholar 

  • Lin W, Yu D, Zhang C, Liu X, Zhang S, Tian Y, Liu S, Xie Z (2015) A multi-objective teaching learning-based optimization algorithm to scheduling in turning processes for minimizing makespan and carbon footprint. J Clean Prod 101:337–347

    Article  Google Scholar 

  • Lin W, Yu D, Zhang C, Tian Y, Liu S, Luo M (2016) Multi-objective optimization of machining parameters in multi-pass turning operations for low-carbon manufacturing. J Eng Manuf 231(13):2372–2383. https://doi.org/10.1177/0954405416629098

    Article  Google Scholar 

  • Liu Y, Dong H, Lohse N, Petrovic S, Gindy N (2014) An investigation into minimizing total energy consumption and total weighted tardiness in job shops. J Clean Prod 65:87–96

    Article  Google Scholar 

  • Liu Y, Dong H, Lphse N (2016) A multi-objective genetic algorithm for optimization of energy consumption and shop floor production performance. Int JProd Econ 179:259–272

    Article  Google Scholar 

  • Lv X, He F, Cai W, Cheng Y (2017) A string-wise CRDT algorithm for smart and large-scale collaborative editing systems. Adv Eng 33:397–409

    Article  Google Scholar 

  • Lv X, He F, Cai W, Cheng Y (2018) Supporting selective undo of string-wise operations for collaborative editing systems. Future Gener Comput Syst 82:41–62

    Article  Google Scholar 

  • Mohamed F, Abderrahlm B, Mostafa S (2017) Energy efficient and fault tolerant distributed algorithm for data aggregation in wireless sensor networks. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-018-0704-8

    Article  Google Scholar 

  • Moon J, Shin K, Park J (2013) Optimization of production scheduling with time dependent and machine-dependent electricity cost for industrial energy efficiency. Int J Adv Manuf 68(61):523–535

    Article  Google Scholar 

  • Mouzon G, Yildirim M (2008) A framework to minimise total energy consumption and total tardiness on a single machine. Int J Sustain Eng 1(2):105–116

    Article  Google Scholar 

  • Newman S, Nassehi A, Imani-Asrai R, Dhokia V (2012) Energy efficient process planning for CNC machining. CIRP J Manuf Sci Technol 5(2):127–136

    Article  Google Scholar 

  • Ni B, He F, Pan Y, Yuan Z (2016) Using shapes correlation for active contour segmentation of uterine fibroid ultrasound images in computer-aided therapy. Appl Math A J Chin Univ 31(1):37–52

    Article  MathSciNet  MATH  Google Scholar 

  • Pavanaskar S, Pande S, Kwon Y, Hu Z, Sheffer A, McMains S (2015) Energy efficient vector field based toolpaths for CNC pocket machining. J Manuf Process 20:314–320

    Article  Google Scholar 

  • Petrovic M, Mitic M, Vukovic N, Miljkovic Z (2016) Chaotic particle swarm optimization algorithm for flexible process planning. Int J Adv Manuf Technol 85(9):2535–2555

    Article  Google Scholar 

  • Qian B, Wang Q, Hu R, Zhou Z, Yu C, Zhou Z (2017) An effective soft computing technology based on belief-rule-base and particle swarm optimization for tipping paper permeability measurement. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0667-1

    Article  Google Scholar 

  • Rangarajan A, Dornfeld D (2004) Efficient tool paths and part orientation for face milling. CIRP Ann Manuf Technol 53(1):73–76

    Article  Google Scholar 

  • Salido M, Escamilla J, Giret A, Barber F (2016) A genetic algorithm for energy efficiency in job-shop scheduling. Int J Adv Manuf Technol 85(5):1303–1314

    Article  Google Scholar 

  • Salonitis K, Ball P (2013) Energy efficient manufacturing from machine tools to manufacturing systems. In: 46th CIRP Conference on Manufacturing Systems (CIRP CMS 2013) vol, 7, pp 634–639

  • Sarıkaya M, Yılmaz V, Güllü A (2016) Analysis of cutting parameters and cooling/lubrication methods for sustainable machining in turning of Haynes 25 super alloy. J Clean Prod 133:172–181

    Article  Google Scholar 

  • Sharma D, Dhurandher S, Agarwal D (2018) kROp: k‑Means clustering based routing protocol for opportunistic networks. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-018-0697-3

    Article  Google Scholar 

  • Su S, Zhao S (2017) A hierarchical hybrid of genetic algorithm and particle swarm optimization for distributed clustering in large-scale wireless sensor networks. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0619-9

    Article  Google Scholar 

  • Sun J, He F, Chen Y, Chen X (2016) A multiple template approach for robust tracking of fast motion target. Appl Math A J Chin Univ 31(2):177–197

    Article  MathSciNet  MATH  Google Scholar 

  • Tang D, Dai M, Salido M, Giret A (2016) Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Comput Ind 81(3):82–95

    Article  Google Scholar 

  • Tao F, Qi Q (2017) New IT driven service-oriented smart manufacturing: framework and characteristics. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2017.2723764

    Article  Google Scholar 

  • Tao F, Bi L, Zuo Y, Nee A (2017) A cooperative co-evolutionary algorithm for large-scale process planning with energy consideration. J Manuf Sci Eng 139(6):061016. https://doi.org/10.1115/1.403596

    Article  Google Scholar 

  • Tao F, Cheng J, Qi Q, Zhang M, Zhang H, Sui F (2018a) Digital twin driven product design, manufacturing and service with big data. Int J Adv Manuf Technol 94(9):3563–3576

    Article  Google Scholar 

  • Tao F, Qi Q, Liu A, Kusiak A (2018b) Data-driven smart manufacturing. J Manuf Syst. https://doi.org/10.1016/j.jmsy.2018.01.006

    Article  Google Scholar 

  • Vijayaraghavan A, Dornfeld D (2010) Automated energy monitoring of machine tools. CIRP Ann Manuf Technol 59(1):21–24

    Article  Google Scholar 

  • Wang L (2015) An overview of function block enabled adaptive process planning for machining. J Manuf Syst 35:10–25

    Article  Google Scholar 

  • Wang Y, Lin L (2014) Joint production and energy modeling of sustainable manufacturing systems: challenges and methods. In: the ASME 2014 International Manufacturing Science and Engineering Conference (MSEC’14). https://doi.org/10.1115/MSEC2014-4068

  • Wang L, Song Y, Gao Q (2009) Designing function blocks for distributed process planning and adaptive control. 22: 1127–1138

  • Wang J, Wu X, Fang X (2015a) A two-stage ant colony optimization approach based on a directed graph for process planning. Int J Adv Manuf Technol 80(5):839–850

    Article  Google Scholar 

  • Wang S, Lu X, Li X, Li W (2015b) A systematic approach of process planning and scheduling optimization for sustainable machining. J Clean Prod 87:914–929

    Article  Google Scholar 

  • Wang L, Guo C, Li Y, Du B, Guo S (2017) An outsourcing service selection method using ANN and SFLA algorithms for cement equipment manufacturing enterprises in cloud manufacturing. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0612-3

    Article  Google Scholar 

  • Wen X, Li X, Gao L, Sang H (2014) Honey bees mating optimization algorithm for process planning problem. J Intell Manuf 25:459–472

    Article  Google Scholar 

  • Wu Y, He F, Zhang D, Li X (2015) Service-oriented feature-based data exchange for cloud-based design and manufacturing. IEEE Trans Serv Comput Online. https://doi.org/10.1109/TSC.2015.2501981

    Article  Google Scholar 

  • Wu M, Li X, Liu C, Liu M, Zhao N, Wang J, Wan X, Rao Z, Zhu L (2017) Robust global motion estimation for video security based on improved k means clustering. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0660-8

    Article  Google Scholar 

  • Yan J, Li L (2013) Multi-objective optimization of milling parameters—the trade-offs between energy, production rate and cutting quality. J Clean Prod 52:462–471

    Article  Google Scholar 

  • Yan J, Li L, Zhao F, Zhang F, Zhao Q (2016) A multi-level optimization approach for energy-efficient flexible flow shop scheduling. J Clean Prod 137:1543–1552

    Article  Google Scholar 

  • Yan X, He F, Chen Y (2017) A Novel hardware/software partitioning method based on position disturbed particle swarm optimization with invasive weed optimization. J Comput Sci Technol 32(2):340–355

    Article  MathSciNet  Google Scholar 

  • Yan X, He F, Hou N (2018) An efficient particle swarm optimization for large scale hardware/software co-design system. Int J Coop Inf System 27(1):1741001–1741028

    Article  Google Scholar 

  • Yi Q, Li C, Tang Y, Chen X (2015) Multi-objective parameter optimization of CNC machining for low carbon manufacturing. J Clean Prod 95:256–264

    Article  Google Scholar 

  • Yu H, He F, Pan Y (2018) A novel region-based active contour model via local patch similarity measure for image segmentation. Multimed Tools Appl. https://doi.org/10.1007/s11042-018-5697-y

    Article  Google Scholar 

  • Zhang Y, Ge L (2015a) Method for process planning optimization with energy efficiency consideration. Int J Adv Manuf Technol 22(9):2197–2207

    Article  Google Scholar 

  • Zhang H, Zhao F, Fang K, Sutherland J (2014) Energy-conscious flow shop scheduling under time-of-use electricity tariffs. CIRP Ann Manuf Technol 63(1):37–40

    Article  Google Scholar 

  • Zhang Y, Zou P, Li B, Liang S (2015b) Study on optimized principles of process parameters for environmentally friendly machining austenitic stainless steel with high efficiency and little energy consumption. Int J Adv Manuf Technol 79(1):89–99

    Article  Google Scholar 

  • Zhang D, He F, Han S, Li X (2016a) Quantitative optimization of interoperability during feature-based data exchange. Integr Comput Aided Eng 23(1):31–51

    Article  Google Scholar 

  • Zhang Z, Tang R, Peng T, Tao L, Jia S (2016b) A method for minimizing the energy consumption of machining system: integration of process planning and scheduling. J Clean Prod 137:1647–1662

    Article  Google Scholar 

  • Zhang C, Sheng B, Yin X, Zhao F, Shu Y (2017a) Research and development of off-line services for the 3D automatic printing machine based on cloud manufacturing. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0615-0

    Article  Google Scholar 

  • Zhang D, He F, Han S, Zou L, Wu Y, Chen Y (2017b) An efficient approach to directly compute the exact Hausdorff distance for 3D point sets. Integr Comput Aided Eng 24(3):261–277

    Article  Google Scholar 

  • Zhou Y, He F, Qiu Y (2017) Dynamic strategy based parallel ant colony optimization on GPUs for TSPs. Sci China Inf Sci 60(6):068102

    Article  Google Scholar 

  • Zhou Y, Fazhi He F, Hou N, Qiu Y (2018) Parallel ant colony optimization on multi-core SIMD CPUs. Future Gener Comput Syst 79(2):473–487

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the 7th European Community Framework Programme (Grant no. 610675), Natural Science Foundation of China (Grant nos. 31771683, 61472289), Hubei Province Natural Science Foundation (Grant nos. 2016CFB555 and 2016ADC073) and the Fundamental Research Funds for the Central Universities (Grant no. 2662016PY119). The paper reflects only the authors’ views and the Union is not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Z. He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X.X., He, F.Z. & Li, W.D. A cloud-terminal-based cyber-physical system architecture for energy efficient machining process optimization. J Ambient Intell Human Comput 10, 1049–1064 (2019). https://doi.org/10.1007/s12652-018-0832-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-0832-1

Keywords

Navigation