Abstract
The purpose of this study is to identify a humanized computing model for solving ambient service location problems with a developed heuristic algorithm. In real situations, space constraints may result in a practical facility location planning problem in an urban environment. Because of space constraints, large warehouse facilities may not be allocated for a single location; and they need to be partitioned and placed at different locations with synergy and collaboration patterns to fulfill orders for many retail facilities. Therefore, properly locating different types of warehouse facilities to make logistics and supply efficient is important. This study considers the multiple-distinct facilities service location problems (MDFSLP) that are constrained in four attributes of single sourcing, p-median, p-dispersion, and hierarchical location. Although past research has discussed the same types of warehouse location problems, the MDFSLP has sparsely been explored and reviewed. Thus, this study proposes a fast-iterated local search (FSILS) algorithm to solve the problem efficiently. The results show that the FSILS algorithm contributes to the better efficiency of computational time than other listed similar approaches and are of high importance in a realistic location environment to promote industry development on business strategies.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abo-Elnaga Y, El-Sobky B, Al-Naser L (2017) An active-set trust-region algorithm for solving warehouse location problem. J Taibah Univ Sci 11(2):353–358. https://doi.org/10.1016/j.jtusci.2016.04.003
Alavidoost MH, Tarimoradi M, Zarandi MF (2015) Bi-objective mixed-integer nonlinear programming for multi-commodity tri-echelon supply chain networks. J Intell Manuf. https://doi.org/10.1007/s10845-015-1130-9
Albareda-Sambola M, Hinojosa Y, Puerto J (2015) The reliable p-median problem with at-facility service. Eur J Oper Res 245(3):656—666. https://doi.org/10.1016/j.ejor.2015.03.049
Aliakbarian N, Dehghanian F, Salari M (2015) A bi-level programming model for protection of hierarchical facilities. Comput Oper Res 64:210—224. https://doi.org/10.1016/j.cor.2015.05.016
An Y, Zeng B, Zhang Y, Zhao L (2014) Reliable p-median facility location problem: two-stage robust models and algorithms. Transp Res Part B 64:54—72. https://doi.org/10.1016/j.trb.2014.02.005
Arabani AB, Farahani RZ (2012) Facility location dynamics: an overview of classifications and applications. Comput Ind Eng 62(1):408—420. https://doi.org/10.1016/j.cie.2011.09.018
Bautista J, Pereira J (2007) A GRASP algorithm to solve the unicost set covering problem. Comput Oper Res 34(10):162—3173. https://doi.org/10.1016/j.cor.2005.11.026
Blanco V, Puerto J, Ben-Ali SEH (2016) Continuous multifacility ordered median location problems. Eur J Oper Res 250(1):56—64. https://doi.org/10.1016/j.ejor.2015.10.065
Brimberg J, Drezner Z (2013) A new heuristic for solving the p-median problem in the plane. Comput Oper Res 40(1):427—437. https://doi.org/10.1016/j.cor.2012.07.012
Cao B, Uebe G (1993) An algorithm for solving capacitated multicommodity p-median transportation problems. J Oper Res Soc. https://doi.org/10.2307/2584196
Casas-Ramírez MS, Camacho-Vallejo JF (2017) Solving the p-median bilevel problem with order through a hybrid heuristic. Appl Soft Comput 60:73—86. https://doi.org/10.1016/j.asoc.2017.06.026
Chen D, Zhou S, Xie Y, Li X (2015) Optimal facility location model based on genetic simulated annealing algorithm for siting urban refueling stations. Math Prob Eng. https://doi.org/10.1155/2015/981370
Chen Y, Zhao Q, Wang L, Dessouky M (2016) The regional cooperation-based warehouse location problem for relief supplies. Comput Ind Eng 102:259—267. https://doi.org/10.1016/j.cie.2016.10.021
Chen H, Wang X, Liu Z, Zhao R (2017) Impact of risk levels on optimal selling to heterogeneous retailers under dual uncertainties. J Ambient Intell Humaniz Comput 8(5):727—745. https://doi.org/10.1007/s12652-017-0481-9
Cokelez S, Burns JR (1989) Distribution systems-warehouse location and capacity. Omega 17(1):45—51. https://doi.org/10.1016/0305-0483(89)90019-4
Costantino N, Pellegrino R (2010) Choosing between single and multiple sourcing based on supplier default risk: a real options approach. J Purch Supply Manag 16(1):27—40. https://doi.org/10.1016/j.pursup.2009.08.001
Drezner Z, Scott C, Song JS (2003) The central warehouse location problem revisited. IMA J Manag Math 14(4):321—336. https://doi.org/10.1093/imaman/14.4.321
Drezner Z, Brimberg J, Mladenović N, Salhi S (2015) New heuristic algorithms for solving the planar p-median problem. Comput Oper Res 62:296—304. https://doi.org/10.1016/j.cor.2014.05.010
Elmaghraby WJ (2000) Supply contract competition and sourcing policies. Manuf Ser Oper Manag 2(4):350—371. https://doi.org/10.1287/msom.2.4.350.12340
Farahani RZ, Hekmatfar M, Fahimnia B, Kazemzadeh N (2014) Hierarchical facility location problem: models, classifications, techniques, and applications. Comput Ind Eng 68:104—117. https://doi.org/10.1016/j.cie.2013.12.005
Feo TA, Venkatraman K, Bard JF (1991) A GRASP for a difficult single machine scheduling problem. Comput Oper Res 18(8):635—643. https://doi.org/10.1016/0305-0548(91)90001-8
Guastaroba G, Speranza MG (2014) A heuristic for BILP problems: the single source capacitated facility location problem. Eur J Oper Res 238(2):438—450. https://doi.org/10.1016/j.ejor.2014.04.007
Gueye S, Menezes MB (2015) General asymptotic and submodular results for the median problem with unreliable facilities. Oper Res Lett 43(5):519—521. https://doi.org/10.1016/j.orl.2015.07.005
Hamidi MR, Gholamian MR, Shahanaghi K, Yavari A (2017) Reliable warehouse location-network design problem under intentional disruption. Comput Ind Eng 113:123—134. https://doi.org/10.1016/j.cie.2017.09.012
Hinojosa Y, Puerto J, Fernández FR (2000) A multiperiod two-echelon multicommodity capacitated plant location problem. Eur J Oper Res 123(2):271—291. https://doi.org/10.1016/S0377-2217(99)00256-8
Hsieh LF, Tsai L (2006) The optimum design of a warehouse system on order picking efficiency. Int J Adv Manuf Technol 28(5—6):626—637. https://doi.org/10.1007/s00170-004-2404-0
Huang HC, Li R (2008) A k-product uncapacitated facility location problem. Eur J Oper Res 185(2):552—562. https://doi.org/10.1016/j.ejor.2007.01.010
Huang X, Yin C, Dadras S, Cheng Y, Bai L. Computing (2018) Adaptive rapid defect identification in ECPT based on K-means and automatic segmentation algorithm. J Ambient Intell Hum. https://doi.org/10.1007/s12652-017-0671-5
IBM Inc (2018) IBM ILOG CPLEX optimization studio getting started with CPLEX. https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.studio.help/pdf/gscplex.pdf. Accessed 1 Feb 2018
Jayaraman V, Pirkul H (2001) Planning and coordination of production and distribution facilities for multiple commodities. Eur J Oper Res 133(2):394—408. https://doi.org/10.1016/S0377-2217(00)00033-3
Kalcsics J (2011) The multi-facility median problem with pos/neg weights on general graphs. Comput Oper Res 38(3):674—682. https://doi.org/10.1016/j.cor.2010.08.002
Kalcsics J, Nickel S, Pozo MA, Puerto J, Rodríguez-Chía AM (2014) The multicriteria p-facility median location problem on networks. Eur J Oper Res 235(3):484—493. https://doi.org/10.1016/j.ejor.2014.01.003
Kalfakakou R, Katsavounis S, Tsouros K (2003) Minimum number of warehouses for storing simultaneously compatible products. Int J Prod Econ 81:559—564. https://doi.org/10.1016/S0925-5273(02)00368-7
Kallrath J (2005) Solving planning and design problems in the process industry using mixed integer and global optimization. Ann Oper Res 140(1):339—373. https://doi.org/10.1007/s10479-005-3976-2
Ke H, Liu J (2017) Dual-channel supply chain competition with channel preference and sales effort under uncertain environment. J Ambient Intell Humaniz Comput 8(5):781—795. https://doi.org/10.1007/s12652-017-0502-8
Köchel P, Thiem S (2011) Search for good policies in a single-warehouse, multi-retailer system by particle swarm optimisation. Int J Prod Econ 133(1):319—325. https://doi.org/10.1016/j.ijpe.2010.03.021
Lee WI, Shih BY, Chen CY (2012) A hybrid artificial intelligence sales-forecasting system in the convenience store industry. Hum Factors Ergon Manuf Ser Ind 22(3):188—196. https://doi.org/10.1002/hfm.20272
Lin CKY (2009) Stochastic single-source capacitated facility location model with service level requirements. Int J Prod Econ 117(2):439—451. https://doi.org/10.1016/j.ijpe.2008.11.009
Lin G, Guan J (2018) A hybrid binary particle swarm optimization for the obnoxious p-median problem. Inf Sci 425:1—17. https://doi.org/10.1016/j.ins.2017.10.020
LINDO Systems (2006) Optimization modeling with LINGO—sixth edition. ISBN: 1-893355-00-4. https://www.lindo.com/downloads/LINGO_text/TOC.pdf. Accessed 1 Feb 2018
Lourenço HR, Martin OC, Stützle T (2010) Iterated local search: framework and applications. In: Handbook of metaheuristics. Springer, US, pp 363—397. https://doi.org/10.1007/978-1-4419-1665-5_12
Mac Queen J (1967) Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability 1(14):281—297. https://projecteuclid.org/ euclid.bsmsp/1200512992. Accessed 1 Feb 2018
Meena PL, Sarmah SP, Sarkar A (2011) Sourcing decisions under risks of catastrophic event disruptions. Transp Res Part E 47(6):1058—1074. https://doi.org/10.1016/j.tre.2011.03.003
Michel L, Van Hentenryck P (2004) A simple tabu search for warehouse location. Eur J Oper Res 157(3):576—591. https://doi.org/10.1016/S0377-2217(03)00247-9
Mladenović N, Brimberg J, Hansen P, Moreno-Pérez JA (2007) The p-median problem: a survey of metaheuristic approaches. Eur J Oper Res 179(3):927—939. https://doi.org/10.1016/j.ejor.2005.05.034
Nezhad AM, Manzour H, Salhi S (2013) Lagrangian relaxation heuristics for the uncapacitated single-source multi-product facility location problem. Int J Prod Econ 145(2):713—723. https://doi.org/10.1016/j.ijpe.2013.06.001
Pisinger D (2006) Upper bounds and exact algorithms for p-dispersion problems. Comput Oper Res 33(5):1380—1398. https://doi.org/10.1016/j.cor.2004.09.033
Rath S, Gutjahr WJ (2014) A math-heuristic for the warehouse location–routing problem in disaster relief. Comput Oper Res 42:25—39. https://doi.org/10.1016/j.cor.2011.07.016
Ravi SS, Rosenkrantz DJ, Tayi GK (1994) Heuristic and special case algorithms for dispersion problems. Oper Res 42(2):299—310. https://doi.org/10.1287/opre.42.2.299
Resende MG, Martí R, Gallego M, Duarte A (2010) GRASP and path relinking for the max–min diversity problem. Comput Oper Res 37(3):498—508. https://doi.org/10.1016/j.cor.2008.05.011
Sayyady F, Fathi Y (2016) An integer programming approach for solving the p-dispersion problem. Eur J Oper Res 253(1):216—225. https://doi.org/10.1016/j.ejor.2016.02.026
Sayyady F, Tutunchi GK, Fathi Y (2015) P-median and p-dispersion problems: a bi-criteria analysis. Comput Oper Res 61:46—55. https://doi.org/10.1016/j.cor.2015.02.007
Sharma RRK, Agarwal P (2014) Approaches to solve MID_CPLP problem: theoretical framework and empirical investigation. Am J Oper Res 4(03):142—154. https://doi.org/10.4236/ajor.2014.43014
Sharma RRK, Tyagi P, Kumar V, Jha A (2015) Developing strong and hybrid formulation for the single stage single period multi commodity warehouse location problem: theoretical framework and empirical investigation. Am J Oper Res 5(3):112—128. https://doi.org/10.4236/ajor.2015.53010
Tang H, Cheng TCE, Ng CT (2009) Finite dominating sets for the multi-facility ordered median problem in networks and algorithmic applications. Comput Ind Eng 57(3):707—712. https://doi.org/10.1016/j.cie.2009.01.015
Wutthisirisart P, Sir MY, Noble JS (2015) The two-warehouse material location selection problem. Int J Prod Econ 170:780—789. https://doi.org/10.1016/j.ijpe.2015.07.008
Yaobao Z, Ping H, Shu Y (2013) An improved particle swarm optimization for the automobile spare part warehouse location problem. Math Prob Eng. https://doi.org/10.1155/2013/726194
Yu H, Zeng AZ, Zhao L (2009) Single or dual sourcing: decision-making in the presence of supply chain disruption risks. Omega 37(4):788—800. https://doi.org/10.1016/j.omega.2008.05.006
Zarrinpoor N, Fallahnezhad MS, Pishvaee MS (2017) Design of a reliable hierarchical location-allocation model under disruptions forhealth service networks: a two-stage robust approach. Comput Ind Eng 109:130—150. https://doi.org/10.1016/j.cie.2017.04.036
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interests regarding the publication of this article.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, YS., Chu, HH. & Sangaiah, A.K. Identifying ambient service location problems and its application using a humanized computing model. J Ambient Intell Human Comput 10, 2345–2359 (2019). https://doi.org/10.1007/s12652-018-0838-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-018-0838-8