Skip to main content

Advertisement

Log in

Performing indoor localization with electric potential sensing

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Location-based services or smart home applications all depend on an accurate indoor positioning system. Basically one divides these systems into token-based and token-free localization systems. In this work, we focus on the token-free system based on smart floor technology. Smart floors can typically be built using pressure sensors or capacitive sensors. However, these set-ups are often hard to deploy as mechanical or electrical features are required below the surface and even harder to replace when detected a sensor malfunctioning. Therefore we present a novel indoor positioning system using an uncommon form of passive electric field sensing (EPS), which detects the electric potential variation caused by body movement. The EPS-based smart floor set-up is easy to install by deploying a grid of passive electrode wires underneath any non-conductive surfaces. Easy maintenance is also ensured by the fact that the sensors are not placed underneath the surface, but on the side. Due to the passive measuring nature, low power consumption is achieved as opposed to active capacitive measurement. Since we do not collect image data as in visual-based systems and all sensor data is processed locally, we preserve the user’s privacy. The proposed architecture achieves a high position accuracy and an excellent spatial resolution. Based on our evaluation conducted in our living lab, we measure a mean positioning error of only 12.7 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. http://www.beagleboard.org.

References

  • Bahl P, Padmanabhan VN (2000) Radar: an in-building rf-based user location and tracking system. : INFOCOM 2000. Nineteenth annual joint conference of the IEEE computer and communications societies. Proceedings, vol 2. IEEE, Piscataway, pp 775–784. https://doi.org/10.1109/INFCOM.2000.832252

    Chapter  Google Scholar 

  • Braun A, Dutz T (2013) AmbiTrack-marker-free indoor localization and tracking of multiple users in smart environments with a camera-based approach. Springer, Berlin, Heidelberg, pp 83–93. https://doi.org/10.1007/978-3-642-41043-7-8

    Book  Google Scholar 

  • Braun A, Heggen H, Wichert R (2011) Capfloor—a flexible capacitive indoor localization system. Evaluating AAL systems through competitive benchmarking. Indoor localization and tracking. Springer, New York, pp 26–35. https://doi.org/10.1007/978-3-642-33533-4-3

    Chapter  Google Scholar 

  • Cohn G, Morris D, Patel SN, Tan DS (2011) Your noise is my command: Sensing gestures using the body as an antenna. Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, pp 791–800. https://doi.org/10.1145/1978942.1979058 (CHI ’11)

    Chapter  Google Scholar 

  • Cohn G, Gupta S, Lee TJ, Morris D, Smith JR, Reynolds MS, Tan DS, Patel SN (2012) An ultra-low-power human body motion sensor using static electric field sensing. Proceedings of the 2012 ACM conference on ubiquitous computing. ACM, New York, pp 99–102. https://doi.org/10.1145/2370216.2370233 (UbiComp ’12)

    Chapter  Google Scholar 

  • Dockstader SL, Tekalp AM (2001) Multiple camera tracking of interacting and occluded human motion. Proc IEEE 89(10):1441–1455. https://doi.org/10.1109/5.959340

    Article  MATH  Google Scholar 

  • Elble RJ, Thomas SS, Higgins C, Colliver J (1991) Stride-dependent changes in gait of older people. J Neurol 238(1):1–5. https://doi.org/10.1007/BF00319700

    Article  Google Scholar 

  • Ficker T (2006) Electrification of human body by walking. J Electrost 64(1):10–16. https://doi.org/10.1016/j.elstat.2005.04.002

    Article  Google Scholar 

  • Filippoupolitis A, Oliff W, Loukas G (2016) Occupancy detection for building emergency management using BLE beacons. Springer International Publishing, Cham, pp 233–240. https://doi.org/10.1007/978-3-319-47217-1-25

    Book  Google Scholar 

  • Fu B, Kirchbuchner F, von Wilmsdorff J, Grosse-Puppendahl T, Braun A, Kuijper A (2017) Indoor localization based on passive electric field sensing. Springer International Publishing, Cham, pp 64–79. https://doi.org/10.1007/978-3-319-56997-0-5

    Book  Google Scholar 

  • Grosse-Puppendahl T, Dellangnol X, Hatzfeld C, Fu B, Kupnik M, Kuijper A, Hastall M, Scott J, Gruteser M (2016) Platypus—indoor localization and identification through sensing electric potential changes in human bodies. 14th ACM international conference on mobile systems, applications and services (MobiSys). ACM, New York. https://doi.org/10.1145/2906388.2906402

    Chapter  Google Scholar 

  • Harland C, Clark T, Prance R (2001) Electric potential probes-new directions in the remote sensing of the human body. Meas Sci Technol 13(2):163. https://doi.org/10.1088/0957-0233/13/2/304

    Article  Google Scholar 

  • Holm S, Nilsen CIC (2010) Robust ultrasonic indoor positioning using transmitter arrays. Indoor positioning and indoor navigation (IPIN), 2010 international conference on. IEEE, Piscataway, pp 1–5. https://doi.org/10.1109/IPIN.2010.5646198

    Chapter  Google Scholar 

  • Ibara K, Kanetsuna K, Hirakawa M (2013) Identifying individuals’ footsteps walking on a floor sensor device. Springer International Publishing, Cham, pp 56–63. https://doi.org/10.1007/978-3-319-02750-0-6

    Book  Google Scholar 

  • Kirchbuchner F, Grosse-Puppendahl T, Hastall MR, Distler M, Kuijper A (2015) Ambient intelligence from senior citizens perspectives: understanding privacy concerns, technology acceptance, andexpectations. Ambient intelligence. Springer, New york, pp 48–59. https://doi.org/10.1007/978-3-319-26005-1-4

    Chapter  Google Scholar 

  • Kruskal W, Wallis W (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc. https://doi.org/10.1002/nav.3800020109

  • Kuhn HW, Yaw B (1955) The hungarian method for the assignment problem. Naval Res Logist Quart pp 83–97

  • Kurita K (2011) Human identification from walking signal based on measurement of current generated by electrostatic induction. In: 2011 international conference on biometrics and Kansei Engineering, pp 232–237, http://doi.org/10.1109/ICBAKE.2011.12

  • Kurita K, Takizawa R, Kumon H (2009) Detection of human walking motion based on measurement system of current generated by electrostatic induction. In: 2009 ICCAS-SICE, pp 5485–5488, http://doi.org/10.1007/s10015-010-0753-3

  • Lee C, Chang Y, Park G, Ryu J, Jeong SG, Park S, Park JW, Lee HC, Hong KS, Lee MH (2004) Indoor positioning system based on incident angles of infrared emitters. Industrial Electronics Society, 2004. IECON 2004. 30th annual conference of IEEE, vol 3. IEEE, Piscataway, pp 2218–2222. https://doi.org/10.1109/IECON.2004.1432143

    Chapter  Google Scholar 

  • Li N, Becerik-Gerber B (2011) Performance-based evaluation of rfid-based indoor location sensing solutions for the built environment. Adv Eng Inform 25(3):535–546. https://doi.org/10.1016/j.aei.2011.02.004

    Article  Google Scholar 

  • Li X, Wang K, Wang W, Li Y (2010) A multiple object tracking method using kalman filter. In: The 2010 IEEE international conference on information and automation, pp 1862–1866, http://doi.org/10.1109/ICINFA.2010.5512258

  • Lim CH, Wan Y, Ng BP, See CMS (2007) A real-time indoor wifi localization system utilizing smart antennas. IEEE Trans Consum Electron 53(2):618–622. https://doi.org/10.1109/TCE.2007.381737

    Article  Google Scholar 

  • Nandashri D, Smitha P (2015) An visual motion tracking of multi-object using hungarian method. Int J Innov Res Dev 4(4)

  • Pouryazdan A, Prance RJ, Prance H, Roggen D (2016) Wearable electric potential sensing: a new modality sensing hair touch and restless leg movement. Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing: adjunct. ACM, New York, pp 846–850. https://doi.org/10.1145/2968219.2968286 (UbiComp ’16)

    Chapter  Google Scholar 

  • Prance RJ, Beardsmore-Rust ST, Watson P, Harland CJ, Prance H (2008) Remote detection of human electrophysiological signals using electric potential sensors. Appl Phys Lett 93(3):033906. https://doi.org/10.1063/1.2964185

    Article  Google Scholar 

  • Pu Q, Gupta S, Gollakota S, Patel S (2013) Whole-home gesture recognition using wireless signals. Proceedings of the 19th annual international conference on mobile computing vol 38; networking. ACM, New York, pp 27–38. https://doi.org/10.1145/2500423.2500436 (MobiCom ’13)

    Chapter  Google Scholar 

  • Rubio JPB, Zhou C, Hernández FS (2005) Vision-based walking parameter estimation for biped locomotion imitation. Springer, Berlin, Heidelberg, pp 677–684. https://doi.org/10.1007/11494669-83

    Book  Google Scholar 

  • Saad SS, Nakad ZS (2011) A standalone rfid indoor positioning system using passive tags. IEEE Trans Ind Electron 58(5):1961–1970. https://doi.org/10.1109/TIE.2010.2055774

    Article  Google Scholar 

  • Sahbani B, Adiprawita W (2016) Kalman filter and iterative-hungarian algorithm implementation for low complexity point tracking as part of fast multiple object tracking system. In: 2016 international conference on frontiers of information technology (FIT) pp 109–115, https://doi.org/10.1109/ICSEngT.2016.7849633

  • Steinhage A, Lauterbach C (2008) Sensfloor (r): Ein aal sensorsystem für sicherheit, homecare und komfort. Ambient Assisted Living-AAL

  • Valtonen M, Maentausta J, Vanhala J (2009) Tiletrack: Capacitive human tracking using floor tiles. In: 2009 IEEE international conference on pervasive computing and communications, pp 1–10, 10.1109/PERCO.2009.4912749

  • Williams A, Ganesan D, Hanson A (2007) Aging in place: fall detection and localization in a distributed smart camera network. Proceedings of the 15th international conference on multimedia. ACM, New York, pp 892–901. https://doi.org/10.1145/1291233.1291435

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biying Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, B., Kirchbuchner, F., von Wilmsdorff, J. et al. Performing indoor localization with electric potential sensing. J Ambient Intell Human Comput 10, 731–746 (2019). https://doi.org/10.1007/s12652-018-0879-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-0879-z

Keywords

Navigation