Skip to main content
Log in

Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The number of deaths caused by melanoma has increased remarkably in the last few years which are the carcinogenic type of skin cancer. Lately, computer based methods are introduced which are intelligent enough to support dermatologist in initial judgment of skin lesion. However, there still exists a gap for an optimal solution; therefore, machine learning community is still considering it a great challenge. The primary objective of this article is to efficiently detect and classify skin lesion with the utilization of an improved segmentation and feature selection criteria. Presented contribution is threefold; First, ternary color spaces are exploited to separate foreground from the background—utilizing multilevel approach of contrast stretching. Second, a weighting criterion is designed which is able to select the best solution based on extended texture feature analysis, related labels, boundary connections and central distance. Third, an improved feature extraction and dimensionality reduction criteria is proposed which combines conventional as well as recent feature extraction techniques. The proposed method is tested on PH2, ISBI 2016 and ISIC benchmark data sets and evaluated on the basis of multiple parameters including FPR, sensitivity, specificity, FNR and accuracy. From the statistics, it is quite clear that the proposed method outperforms numerous existing techniques with considerable margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adjed F, Gardezi SJS, Ababsa F, Faye I, Dass SC (2017) Fusion of structural and textural features for melanoma recognition. IET Comput Vis 12(2):185–195

    Article  Google Scholar 

  • Ahnlide I, Bjellerup M, Nilsson F, Nielsen K (2016) Validity of ABCD rule of dermoscopy in clinical practice. Acta dermato Venereol 96(3):367–372

    Article  CAS  Google Scholar 

  • Aksac A, Ozyer T, Alhajj R (2017) Complex networks driven salient region detection based on superpixel segmentation. Pattern Recognit 66:268–279

    Article  ADS  Google Scholar 

  • Al-Ayyoub M, Al-Mnayyis N, Alsmirat MA, Alawneh K, Jararweh Y, Gupta BB (2018) SIFT based ROI extraction for lumbar disk herniation CAD system from MRI axial scans. J Ambient Intell Humaniz Comput, 1–9

  • Alzu’bi A, Amira A, Ramzan N (2017) Content-based image retrieval with compact deep convolutional features. Neurocomputing 249:95–105

    Article  Google Scholar 

  • Amin J, Sharif M, Yasmin M, Ali H, Fernandes SL (2017a) A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions. J Comput Science 19:153–164

    Article  Google Scholar 

  • Amin J, Sharif M, Yasmin M, Fernandes SL (2017b) A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2017.10.036

    Article  Google Scholar 

  • Ansari UB, Sarode T (2017) Skin cancer detection using image processing. Int Res J Eng Technol 4(4):2875–2881

    Google Scholar 

  • Arroyo JLG, Zapirain BG (2014) Detection of pigment network in dermoscopy images using supervised machine learning and structural analysis. Comput Biol Med 44:144–157

    Article  Google Scholar 

  • Barata C, Ruela M, Francisco M, Mendonça T, Marques JS (2014) Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst J 8(3):965–979

    Article  ADS  Google Scholar 

  • Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  ADS  Google Scholar 

  • Bi L, Kim J, Ahn E, Feng D, Fulham M (2016) Automated skin lesion segmentation via image-wise supervised learning and multi-scale superpixel based cellular automata. In: Paper presented at the biomedical imaging (ISBI), 2016 IEEE 13th international symposium on

  • Bokhari F, Syedia T, Sharif M, Yasmin M, Fernandes SL (2018) Fundus image segmentation and feature extraction for the detection of glaucoma: a new approach. Curr Med Imaging Rev 14(1):77–87

    Article  Google Scholar 

  • Bozorgtabar B, Abedini M, Garnavi R (2016) Sparse coding based skin lesion segmentation using dynamic rule-based refinement. In: Paper presented at the international workshop on machine learning in medical imaging

  • Brunssen A, Waldmann A, Eisemann N, Katalinic A (2017) Impact of skin cancer screening and secondary prevention campaigns on skin cancer incidence and mortality: a systematic review. J Am Acad Dermatol 76(1):129–139. e110

    Article  PubMed  Google Scholar 

  • Busin L, Vandenbroucke N, Macaire L (2008) Color spaces and image segmentation. Adv Imaging Electron Phys 151(1):1

    Google Scholar 

  • Capdehourat G, Corez A, Bazzano A, Alonso R, Musé P (2011) Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions. Pattern Recogn Lett 32(16):2187–2196

    Article  ADS  Google Scholar 

  • Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kittler H (2018) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: Paper presented at the biomedical imaging (ISBI 2018), 2018 IEEE 15th international symposium on

  • Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Paper presented at the computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on

  • Dalila F, Zohra A, Reda K, Hocine C (2017) Segmentation and classification of melanoma and benign skin lesions. Opt Int J Light Electron Opt 140:749–761

    Article  Google Scholar 

  • Dhane DM, Krishna V, Achar A, Bar C, Sanyal K, Chakraborty C (2016) Spectral clustering for unsupervised segmentation of lower extremity wound beds using optical images. J Med Syst 40(9):207

    Article  PubMed  Google Scholar 

  • Dhane DM, Maity M, Mungle T, Bar C, Achar A, Kolekar M, Chakraborty C (2017) Fuzzy spectral clustering for automated delineation of chronic wound region using digital images. Comput Biol Med 89:551–560

    Article  Google Scholar 

  • Duan Q, Akram T, Duan P, Wang X (2016) Visual saliency detection using information contents weighting. Opt Int J Light Electron Opt 127(19):7418–7430

    Article  Google Scholar 

  • Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3:32–57. https://doi.org/10.1080/01969727308546046

    Article  MathSciNet  Google Scholar 

  • Eltoukhy MM, Elhoseny M, Hosny KM, Singh AK (2018) Computer aided detection of mammographic mass using exact Gaussian–Hermite moments. J Ambient Intell Humaniz Comput 1–9

  • Ferris LK, Harkes JA, Gilbert B, Winger DG, Golubets K, Akilov O, Satyanarayanan M (2015) Computer-aided classification of melanocytic lesions using dermoscopic images. J Am Acad Dermatol 73(5):769–776

    Article  PubMed  Google Scholar 

  • Gambichler T, Jaedicke V, Terras S (2011) Optical coherence tomography in dermatology: technical and clinical aspects. Arch Dermatol Res 303(7):457–473

    Article  PubMed  Google Scholar 

  • Goldberger J, Hinton GE, Roweis ST, Salakhutdinov RR (2005) Neighbourhood components analysis. In: Paper presented at the advances in neural information processing systems

  • Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1605.01397

  • Hendi A, Martinez JC (2011) Atlas of skin cancers: practical guide to diagnosis and treatment. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Iqbal Z, Khan MA, Sharif M, Shah JH, ur Rehman MH, Javed K (2018) An automated detection and classification of citrus plant diseases using image processing techniques: a review. Comput Electron Agric 153:12–32

    Article  Google Scholar 

  • Johr RH (2002) Dermoscopy: alternative melanocytic algorithms—the ABCD rule of dermatoscopy, menzies scoring method, and 7-point checklist. Clin Dermatol 20(3):240–247

    Article  PubMed  Google Scholar 

  • Kaur M, Kaur J, Kaur J (2011) Survey of contrast enhancement techniques based on histogram equalization. IJACSA Int J Adv Comput Sci Appl 2(7):1–173

    Google Scholar 

  • Kawahara J, BenTaieb A, Hamarneh G (2016) Deep features to classify skin lesions. Paper presented at the biomedical imaging (ISBI), 2016 IEEE 13th international symposium on

  • Kawahara J, Daneshvar S, Argenziano G, Hamarneh G (2018) 7-Point checklist and skin lesion classification using multi-task multi-modal neural nets. IEEE J Biomed Health Inform

  • Khalid S, Khalil T, Nasreen S (2014) A survey of feature selection and feature extraction techniques in machine learning. In: Paper presented at the science and information conference (SAI), 2014

  • Khan MA, Sharif M, Javed MY, Akram T, Yasmin M, Saba T (2017) License number plate recognition system using entropy-based features selection approach with SVM. IET Image Process 12:200–209

    Article  Google Scholar 

  • Khan MA, Akram T, Sharif M, Shahzad A, Aurangzeb K, Alhussein M, Altamrah A (2018a) An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification. BMC Cancer 18(1):638

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Akram T, Sharif M, Javed MY, Muhammad N, Yasmin M (2018b) An implementation of optimized framework for action classification using multilayers neural network on selected fused features. Pattern Anal Appl. https://doi.org/10.1007/s10044-018-0688-1

    Article  Google Scholar 

  • Kushwaha N, Pant M (2018) Fuzzy magnetic optimization clustering algorithm with its application to health care. J Ambient Intell Humaniz Comput 1–10

  • Li J, Liu L, Zhou M, Yang J-J, Chen S, Liu H, Tan F (2018) Feature selection and prediction of small-for-gestational-age infants. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-018-0892-2

    Article  Google Scholar 

  • Liaqat A, Khan MA, Shah JH, Sharif M, Yasmin M, Fernandes SL (2018) Automated ulcer and bleeding classification from wce images using multiple features fusion and selection. J Mech Med Biol 18(4):1850038

    Article  Google Scholar 

  • Liu Y, Zheng YF (2005) One-against-all multi-class SVM classification using reliability measures. In: Paper presented at the Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE international joint conference on

  • Lopez AR, Giro-i-Nieto X, Burdick J, Marques O (2017) Skin lesion classification from dermoscopic images using deep learning techniques. In: Paper presented at the biomedical engineering (BioMed), 2017 13th IASTED international conference on

  • Machado M, Pereira J, Fonseca-Pinto R (2015) Classification of reticular pattern and streaks in dermoscopic images based on texture analysis. J Med Imaging 2(4):044503

    Article  Google Scholar 

  • Majtner T, Yildirim-Yayilgan S, Hardeberg JY (2016) Combining deep learning and hand-crafted features for skin lesion classification. In: Paper presented at the image processing theory tools and applications (IPTA), 2016 6th international conference on

  • Monisha M, Suresh A, Bapu BT, Rashmi M (2018) Classification of malignant melanoma and benign skin lesion by using back propagation neural network and ABCD rule. Cluster Comput 1–11

  • Nasir M, Attique Khan M, Sharif M, Lali IU, Saba T, Iqbal T (2018) An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc Res Tech 81(6):528–543

    Article  PubMed  Google Scholar 

  • Okuboyejo DA, Olugbara OO, Odunaike SA (2013) Automating skin disease diagnosis using image classification. In: Paper presented at the proceedings of the world congress on engineering and computer science

  • Oliveira RB, Papa JP, Pereira AS, Tavares JMR (2018) Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput Appl 29(3):613–636

    Article  Google Scholar 

  • Pennisi A, Bloisi DD, Nardi D, Giampetruzzi AR, Mondino C, Facchiano A (2016) Skin lesion image segmentation using Delaunay Triangulation for melanoma detection. Comput Med Imaging Graph 52:89–103

    Article  PubMed  Google Scholar 

  • Permuter H, Francos J, Jermyn I (2006) A study of Gaussian mixture models of color and texture features for image classification and segmentation. Pattern Recogn 39(4):695–706

    Article  ADS  Google Scholar 

  • Prabukumar M, Agilandeeswari L, Ganesan K (2017) An intelligent lung cancer diagnosis system using cuckoo search optimization and support vector machine classifier. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0655-5

    Article  Google Scholar 

  • Premaladha J, Ravichandran K (2016) Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J Med Syst 40(4):96

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Song S, Huang G, Zhu L (2015) Unsupervised neighborhood component analysis for clustering. Neurocomputing 168:609–617

    Article  Google Scholar 

  • Raja NSM, Fernandes S, Dey N, Satapathy SC, Rajinikanth V (2018) Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-018-0854-8

    Article  Google Scholar 

  • Ravindraiah R (2012) Quality improvement for analysis of leukemia images through contrast stretch methods. Proc Eng 30:475–481

    Article  CAS  Google Scholar 

  • Raza M, Sharif M, Yasmin M, Khan MA, Saba T, Fernandes SL (2018) Appearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learning. Future Gener Comput Syst 88:28–39

    Article  Google Scholar 

  • Read RL, Madronio CM, Cust AE, Goumas C, Watts CG, Menzies S, Morton RL (2018) Follow-up recommendations after diagnosis of primary cutaneous melanoma: a population-based study in New South Wales, Australia. Ann Surg Oncol 25(3):617–625

    Article  PubMed  Google Scholar 

  • Shah JH, Chen Z, Sharif M, Yasmin M, Fernandes SL (2017a) A novel biomechanics-based approach for person re-identification by generating dense color sift salience features. J Mech Med Biol 17(07):1740011

    Article  Google Scholar 

  • Shah JH, Sharif M, Yasmin M, Fernandes SL (2017b) Facial expressions classification and false label reduction using LDA and threefold SVM. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2017.06.021

    Article  Google Scholar 

  • Sharif M, Khan MA, Akram T, Javed MY, Saba T, Rehman A (2017) A framework of human detection and action recognition based on uniform segmentation and combination of Euclidean distance and joint entropy-based features selection. EURASIP J Image Video Process 2017(1):89

    Article  Google Scholar 

  • Sharif M, Khan MA, Faisal M, Yasmin M, Fernandes SL (2018a) A framework for offline signature verification system: best features selection approach. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2018.01.021

    Article  Google Scholar 

  • Sharif M, Khan MA, Iqbal Z, Azam MF, Lali MIU, Javed MY (2018b) Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Comput Electron Agric 150:220–234

    Article  Google Scholar 

  • Shereena V, David JM (2014) Content based image retrieval: classification using neural networks. Int J Multimedia Appl 6(5):31

    Article  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30

    Article  PubMed  Google Scholar 

  • Sng J, Koh D, Siong WC, Choo TB (2009) Skin cancer trends among Asians living in Singapore from 1968 to 2006. J Am Acad Dermatol 61(3):426–432

    Article  PubMed  Google Scholar 

  • Stoecker WV, Wronkiewiecz M, Chowdhury R, Stanley RJ, Xu J, Bangert A, Oliviero M (2011) Detection of granularity in dermoscopy images of malignant melanoma using color and texture features. Comput Med Imaging Graph 35(2):144–147

    Article  PubMed  Google Scholar 

  • Uddin MZ, Hassan MM, Almogren A, Zuair M, Fortino G, Torresen J (2017) A facial expression recognition system using robust face features from depth videos and deep learning. Comput Electr Eng 63:114–125

    Article  Google Scholar 

  • Waheed Z, Waheed A, Zafar M, Riaz F (2017) An efficient machine learning approach for the detection of melanoma using dermoscopic images. In: International conference on paper presented at the communication, computing and systems D (C-CODE)

  • Wu Y, Liu B, Wu W, Lin Y, Yang C, Wang M (2018) Grading glioma by radiomics with feature selection based on mutual information. J Ambient Intell Humaniz Comput. DOI: 10.1007/s12652-018-0883-3

    Article  Google Scholar 

  • Yang W, Wang K, Zuo W (2012) Neighborhood component feature selection for high-dimensional data. JCP 7(1):161–168

    Google Scholar 

  • Yu L, Chen H, Dou Q, Qin J, Heng P-A (2017) Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36(4):994–1004

    Article  PubMed  Google Scholar 

  • Zhang Q, Lin J, Tao Y, Li W, Shi Y (2017) Salient object detection via color and texture cues. Neurocomputing 243:35–48

    Article  Google Scholar 

  • Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection. In: Paper presented at the proceedings of the IEEE conference on computer vision and pattern recognition

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mussarat Yasmin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, T., Khan, M.A., Sharif, M. et al. Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features. J Ambient Intell Human Comput 15, 1083–1102 (2024). https://doi.org/10.1007/s12652-018-1051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-1051-5

Keywords

Navigation