Skip to main content

Advertisement

Log in

FGAF-CDG: fuzzy geographic routing protocol based on compressive data gathering in wireless sensor networks

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

In the wireless sensor networks (WSNs), energy consumption is one of the significant factors. Most of the energy in a WSN is consumed by communication between nodes. To minimize energy consumption, routing protocols can be merged with data aggregation techniques. The geographic adaptive fidelity (GAF) protocol is one of the prominent geographic routing protocols which is proposed in order to reduce energy consumption in WSNs. Moreover, compressive sensing (CS) theory presented as an alternative method for data gathering in WSNs, known as compressive data gathering (CDG). CDG reduces the cost of communications and balances the energy load in the network without imposing heavy computation or transmission overhead. With CDG, instead of receiving all readings from the sensors, the sink may receive few weighted sums of all the readings by which original data can be recovered by the sink. In this paper, we propose a GAF-based routing protocol based on CDG technique named fuzzy GAF based on CDG (FGAF-CDG). In this work, we partition the sensors area into virtual hexagonal grid cells firstly and then we lay the cells according to their geographic locations. In each sampling round, cluster head (CH) sensor in each grid cell is selected based on a fuzzy logic-based algorithm. Then, CH readings will be forwarded to the sink in a multi-hop path based on a fuzzy-based routing algorithm in the CDG form. Simulation results show that the proposed method results in superior efficiency as compared to other competitive GAF-based methods. For example, the proposed model offers about 50% reduction in energy consumption as compared to FTGAF-HEX method depending on the dimensions of the sensors area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38(14):393–422

    Article  Google Scholar 

  • Bajwa W, Haupt A, Sayeed A, Nowak R (2006) Compressive wireless sensing. In: Proceedings of 5th international conference on information processing in sensor networks (IPSN), Nashville, Tennessee, USA, 19–21 Apr 2006, pp 134–142

  • Bandyopadhyay S, Coyle EJ (2003) An energy efficient hierarchical clustering algorithm for wireless sensor networks. Proc IEEE INFOCOM 2003:1713–1723

    Google Scholar 

  • Bhattacharyya D, Kim TH, Pal S (2010) A comparative study of wireless sensor networks and their routing protocols. Sensors 10(12):10506–10523

    Article  Google Scholar 

  • Bhuiyan M, Wang G, Vasilakos A (2015) Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Trans Comput 64(7):1968–1982

    Article  MathSciNet  MATH  Google Scholar 

  • Candes E, Wakin M (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30

    Article  Google Scholar 

  • Candes E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  • Cao G, Yu F, Zhang B (2011) Improving network lifetime for wireless sensor network using compressive sensing. In: Proc. IEEE 13th international conference on high performance computing and communications (HPCC), Banff, Canada, 2–4 Apr 2011, pp 448–454

  • Chiang SY, Wang JL (2008) Routing analysis using fuzzy logic systems in wireless sensor networks. In: Proc. international conference on knowledge-based and intelligent information and engineering systems, Zagreb, Croatia, 3–5 Sep 2008, pp 966–973

  • Cuevas-Martinez JC, Yuste-Delgado AJ, Triviño-Cabrera A (2017) Cluster head enhanced election Type-2 fuzzy algorithm for wireless sensor networks. IEEE Commun Lett 21(9):2069–2072

    Article  Google Scholar 

  • Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  • Ebrahimi D, Assi C (2014) A distributed method for compressive data gathering in wireless sensor networks. IEEE Commun Lett 18(4):624–627

    Article  Google Scholar 

  • Ebrahimi D, Assi C (2016) On the interaction between scheduling and compressive data gathering in wireless sensor networks. IEEE Trans Wireless Commun 15(4):2845–2858

    Article  Google Scholar 

  • Erman A, Dilo A, Havinga P (2012) A virtual infrastructure based on honeycomb tessellation for data dissemination in multi-sink mobile wireless sensor networks. EURASIP J on Wireless Commun Netw 1:1–17

    Article  Google Scholar 

  • Estrin D, Culler D, Pister K, Sukhatme G (2002) Connecting the physical world with pervasive networks. IEEE Pervasive Comput 1(1):59–69

    Article  Google Scholar 

  • Grover J, Shikha, Sharma M (2014) Optimized GAF in wireless sensor network. In: Proc. 3rd international conference on reliability, Infocom Technologies and Optimization (ICRITO) (trends and future directions). https://doi.org/10.1109/icrito.2014.7014686

  • Haupt J, Bajwa W, Rabbat M, Nowak R (2008) Compressed sensing for networked data. IEEE Signal Process Mag 25(2):92–101

    Article  Google Scholar 

  • Heinzelman W, Chandrakasan A, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wireless Commun 1(4):660–670

    Article  Google Scholar 

  • Inagaki T, Ishihara S (2009) HGAF: a power saving scheme for wireless sensor networks. Inform Process Soc Jpn J 50(10):2520–2531

    Google Scholar 

  • Ji S, Beyah R, Cai Z (2014) Snapshot and continuous data collection in probabilistic wireless sensor networks. IEEE Trans Mob Comput 13(3):626–637

    Article  Google Scholar 

  • Lan KC, Wei MZ (2017) A compressibility-based clustering algorithm for hierarchical compressive data gathering. IEEE Sens J 17(8):2550–2562

    Article  Google Scholar 

  • Lee JS, Cheng WL (2012) Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication. IEEE Sens J 12(9):2891–2897

    Article  Google Scholar 

  • Liu G, Wen W (2010) A improved GAF clustering algorithm for three-dimensional underwater acoustic networks. In: Proc. international symposium on computer communication control and automation (3CA). https://doi.org/10.1109/3ca.2010.5533743

  • Liu RP, Rogers G, Zhou S (2006) Honeycomb architecture for energy conservation in wireless sensor networks. In: Proc. ieee global telecommunications conference (GLOBECOM). https://doi.org/10.1109/glocom.2006.972

  • Luo C, Wu F, Sun J, Chen CW (2009) Compressive data gathering for large-scale wireless sensor networks. In: Proc. 15th annual international conference on mobile computing and networking, Beijing, China, 20–25 Sep 2009, pp 145–156

  • Luo C, Wu F, Sun J, Chen CW (2010) Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Trans Wireless Commun 9(12):3728–3738

    Article  Google Scholar 

  • Nayak P, Anurag D (2015) A fuzzy logic based clustering algorithm for WSN to extend the network lifetime. IEEE Sens J 16(1):137–144

    Article  Google Scholar 

  • Nayak P, Vathasavai B (2017) Energy efficient clustering algorithm for multi-hop wireless sensor network using type-2 fuzzy logic. IEEE Sens J 17(14):4492–4499

    Article  Google Scholar 

  • Neamatollahi P, Naghibzadeh M, Abrishami S (2017) Fuzzy-based clustering-task scheduling for lifetime enhancement in wireless sensor networks. IEEE Sensor J 17(20):6837–6844

    Article  Google Scholar 

  • Nejad AE, Arbabi M, Romouzi M (2014) A survey on fuzzy based clustering routing protocols in wireless sensor networks: a new viewpoint. Int J Mechatronics Electr Comput Technol 4(10):1186–1199

    Google Scholar 

  • Ni Q, Pan Q, Du H, Cao C, Zhai Y (2017) A novel cluster head selection algorithm based on fuzzy clustering and particle swarm optimization. IEEE/ACM Trans Comput Biol Bioinf 14(1):76–84

    Article  Google Scholar 

  • Pantazis NA, Vergados DD (2007) A survey on power control issues in wireless sensor networks. IEEE Commun Surv Tutor 9(4):86–107

    Article  Google Scholar 

  • Qiao J, Zhang X (2018) Compressive data gathering based on even clustering for wireless sensor networks. IEEE Access 6:24391–24410

    Article  Google Scholar 

  • Shah B, Iqbal F, Abbas A, Kim KI (2015) Fuzzy logic-based guaranteed lifetime protocol for real-time wireless sensor networks. Sensors 15(8):20373–20391

    Article  Google Scholar 

  • Shang F, Liu J (2012) Multi-hop topology control algorithm for wireless sensor networks. J Netw 9(7):1407–1414

    Google Scholar 

  • Sharieh A, Mohammad Q, Almobaideen W, Sliet A (2008) Hex-Cell: modeling, topological properties and routing algorithm. Eur J Sci Res 22(2):457–468

    Google Scholar 

  • Soni V, Mallick DJ (2015) A novel scheme to minimize hop count for GAF in wireless sensor networks: two-level GAF. J Comput Netw Commun. https://doi.org/10.1155/2015/527594

    Article  Google Scholar 

  • Soni V, Mallick DK (2016) An optimal geographic routing protocol based on honeycomb architecture in wireless sensor networks. In: IEEE international conference on electrical, electronics, and optimization techniques (ICEEOT). https://doi.org/10.1109/iceeot.2016.7755558

  • Soni V, Mallick DK (2017) FTGAF-HEX: fuzzy logic based two-level geographic routing protocol in wireless sensor networks. Microsyst Technol 23(8):3443–3455

    Article  Google Scholar 

  • Soro S, Heinzelman WB (2009) Cluster head selection techniques for coverage preservation in wireless sensor networks. Ad Hoc Netw 7(5):955–972

    Article  Google Scholar 

  • Vempaty A, Ozdemir O, Agrawal K, Chen H, Varshney PK (2013) Localization in wireless sensor networks: byzantines and mitigation techniques. IEEE Trans Signal Process 61(6):1495–1508

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Chen Z (2013) LCM: a link-aware clustering mechanism for energy-efficient routing in wireless sensor networks. IEEE Sens J 13(2):728–736

    Article  Google Scholar 

  • Wu X, Tavildar S, Shakkottai S, Richardson T, Li J, Laroia R, Jovicic A (2013) FlashLinQ: a synchronous distributed scheduler for peer-topeer ad hoc networks. IEEE/ACM Trans Netw 21(4):1215–1228

    Article  Google Scholar 

  • Xiang L, Luo J, Rosenberg C (2013) Compressed data aggregation: energy-efficient and high-fidelity data collection. IEEE/ACM Trans Netw 21(6):1722–1735

    Article  Google Scholar 

  • Xie R, Jia X (2014) Transmission-efficient clustering method for wireless sensor networks using compressive sensing. IEEE Trans Parallel Distrib Syst 25(3):806–815

    Article  Google Scholar 

  • Xiong Z, Liveris A, Cheng S (2004) Distributed source coding for sensor networks. IEEE Signal Process Mag 21(5):80–94

    Article  Google Scholar 

  • Xu Y, Heidemann J, Estrin D (2001) Geography-informed energy conservation for ad hoc routing. In: Proc. 7th annual international conference on mobile computing and networking (MobiCOM), Rome, Italy, 16–21 July 2001, pp 70–84

  • Xu E, Ding Z, Dasgupta S (2013) Target tracking and mobile sensor navigation in wireless sensor networks. IEEE Trans Mob Comput 12(1):177–186

    Article  Google Scholar 

  • Younis O, Fahmy S (2004) HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans Mob Comput 3(4):366–379

    Article  Google Scholar 

  • Younis O, Krunz M, Ramasubramanian S (2006) Node clustering in wireless sensor networks: recent developments and deployment challenges. IEEE Netw 20(3):20–25

    Article  Google Scholar 

  • Yousef R, Ahmad R, Hassib A (2017) Fuzzy power allocation for opportunistic relay in energy harvesting wireless sensor networks. IEEE Access 5:17165–17176

    Article  Google Scholar 

  • Youssef M, Youssef A, Younis M (2009) Overlapping multi-hop clustering for wireless sensor networks. IEEE Trans Parallel Distrib Syst 20(12):1844–1856

    Article  Google Scholar 

  • Zheng H, Xiao S, Wang X, Tian X, Guizani M (2013) Capacity and delay analysis for data gathering with compressive sensing in wireless sensor networks. IEEE Trans Wireless Commun 12(2):917–927

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Tabataba Vakili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaderi, M.R., Tabataba Vakili, V. & Sheikhan, M. FGAF-CDG: fuzzy geographic routing protocol based on compressive data gathering in wireless sensor networks. J Ambient Intell Human Comput 11, 2567–2589 (2020). https://doi.org/10.1007/s12652-019-01314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-019-01314-1

Keywords

Navigation