Skip to main content
Log in

Lipid profile prediction based on artificial neural networks

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Lipid profile usually includes levels of total cholesterol (TCH), low density lipoprotein (LDL), high density lipoprotein (HDL) and triglycerides (TG), all of which require a blood test. Using advances in machine learning and a relationship between lipid profile and obesity, a model that predicts lipid profile without using any laboratory results can be developed and used in clinical diagnosis. The causal relationship between lipid profile and obesity is well known—TCH, LDL and TG show an increase, while HDL is decreased in obese persons. In this paper we are using artificial neural networks (ANN) to estimate the lipid profile values using non-lab electronic health record data and some measures of obesity. The ANN inputs are gender, age, systolic and diastolic blood pressures, and a single or a combination of multiple obesity parameters, which include body mass index, saggital abdominal diameter to height ratio, waist to height ratio and body fat percentage. Study shows that the presented solution is suitable for prediction of TCH (with accuracy 81.89%), LDL (with accuracy 79.29%) and HDL (with accuracy 81.23%), while not suitable for TG prediction (with accuracy 44.48%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Mostafa YS, Magdon-Ismail M, Lin HT (2012) Learning from data. AMLBook, Pasadena

    Google Scholar 

  • Appel SJ, Jones ED, Kennedy-Malone L (2004) Central obesity and the metabolic syndrome: implications for primary care providers. J Am Acad Nurse Pract 16(8):335–342

    Article  PubMed  Google Scholar 

  • Arabasadi Z, Alizadehsani R, Roshanzamir M, Moosaei H, Yarifard AA (2017) Computer aided decision making for heart disease detection using hybrid neural network-genetic algorithm. Comput Methods Programs Biomed 141:19–26. https://doi.org/10.1016/j.cmpb.2017.01.004

    Article  PubMed  Google Scholar 

  • Arroyo M, Rocandio AM, Ansotegui L, Herrera H, Salces I, Rebato E (2004) Comparison of predicted body fat percentage from anthropometric methods and from impedance in university students. Br J Nutr 92(5):827–832

    Article  CAS  PubMed  Google Scholar 

  • Ashwell M, Lejeune S, McPherson K (1996) Ratio of waist circumference to height may be better indicator of need for weight management. Br Med J 312(7027):377

    Article  CAS  Google Scholar 

  • Ashwell M, Gunn P, Gibson S (2012) Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 13(3):275–286. https://doi.org/10.1111/j.1467-789X.2011.00952.x

    Article  CAS  PubMed  Google Scholar 

  • Beeson W, Batech M, Schultz E, Salto L, Firek A, Deleon M, Balcazar H, Cordero-Macintyre Z (2010) Comparison of body composition by bioelectrical impedance analysis and dual-energy X-ray absorptiometry in hispanic diabetics. Int J Body Compos Res 8(2):45–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belletti DA, Zacker C, Wogen J (2010) Effect of cardiometabolic risk factors on hypertension management: a cross-sectional study among 28 physician practices in the United States. Cardiovasc Diabetol 9(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatti MS, Akbri MZA, Shakoor M (2001) Lipid profile in obesity. J Ayub Med Coll Abbottabad 13(1):31–3

    CAS  PubMed  Google Scholar 

  • Cartwright MJ, Tchkonia T, Kirkland JL (2007) Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. Exp Gerontol 42(6):463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung K, Yoo H, Choe DE (2018) Ambient context-based modeling for health risk assessment using deep neural network. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-018-1033-7

    Article  Google Scholar 

  • Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2(4):303–314

    Article  MathSciNet  Google Scholar 

  • D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB (2008) General cardiovascular risk profile for use in primary care: the Framingham heart study. Circulation 117(6):743–753. https://doi.org/10.1161/CIRCULATIONAHA.107.699579

    Article  PubMed  Google Scholar 

  • Das R, Turkoglu I, Sengur A (2009) Effective diagnosis of heart disease through neural networks ensembles. Expert Syst Appl 36(4):7675–7680

    Article  Google Scholar 

  • Despres JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C (1990) Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 10(4):497–511

    Article  CAS  PubMed  Google Scholar 

  • Faeh D, Braun J, Bopp M (2012) Body mass index vs cholesterol in cardiovascular disease risk prediction models. JAMA Intern Med 172(22):1766–1768

    Article  Google Scholar 

  • Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB (1996) How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 143(3):228–239

    Article  CAS  PubMed  Google Scholar 

  • Gaziano TA, Young CR, Fitzmaurice G, Atwood S, Gaziano JM (2008) Laboratory-based versus non-laboratory-based method for assessment of cardiovascular disease risk: the NHANES I follow-up study cohort. The Lancet 371(9616):923–931

    Article  Google Scholar 

  • Green BB, Anderson ML, Cook AJ, Catz S, Fishman PA, McClure JB, Reid R (2012) Using body mass index data in the electronic health record to calculate cardiovascular risk. Am J Prev Med 42(4):342–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinkle DE, Wiersma W, Jurs SG et al (1988) Applied statistics for the behavioral sciences, 2nd edn. Houghton Mifflin, Boston

    Google Scholar 

  • Hsieh SD, Yoshinaga H (1999) Do people with similar waist circumference share similar health risks irrespective of height? Tohoku J Exp Med 188(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Jackson AS, Stanforth P, Gagnon J, Rankinen T, Leon AS, Rao D, Skinner J, Bouchard C, Wilmore J (2002) The effect of sex, age and race on estimating percentage body fat from body mass index: the heritage family study. Int J Obes 26(6):789–796

    Article  CAS  Google Scholar 

  • Kahn HS, Bullard KM (2016) Beyond body mass index: advantages of abdominal measurements for recognizing cardiometabolic disorders. Am J Med 129(1):74–81. https://doi.org/10.1016/j.amjmed.2015.08.010

    Article  PubMed  Google Scholar 

  • Kahn HS, Bullard KM (2017) Indicators of abdominal size relative to height associated with sex, age, socioeconomic position and ancestry among us adults. PloS ONE 12(3):e0172245. https://doi.org/10.1371/journal.pone.0172245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MG, Ko H, Pan SB (2019) A study on user recognition using 2D ECG based on ensemble of deep convolutional neural networks. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-019-01195-4

    Article  Google Scholar 

  • Kononenko I (2001) Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23(1):89–109. https://doi.org/10.1016/S0933-3657(01)00077-X

    Article  CAS  PubMed  Google Scholar 

  • Kuk JL, Lee S, Heymsfield SB, Ross R (2005) Waist circumference and abdominal adipose tissue distribution: influence of age and sex. Am J Clin Nutr 81(6):1330–1334

    Article  CAS  PubMed  Google Scholar 

  • Kupusinac A, Stokić E, Srdić B (2012) Determination of WHtR limit for predicting hyperglycemia in obese persons by using artificial neural networks. TEM J 1(4):270–272

    Google Scholar 

  • Kupusinac A, Doroslovački R, Malbaški D, Srdić B, Stokić E (2013) A primary estimation of the cardiometabolic risk by using artificial neural networks. Comput Biol Med 43(6):751–757. https://doi.org/10.1016/j.compbiomed.2013.04.001

    Article  PubMed  Google Scholar 

  • Kupusinac A, Stokić E, Doroslovački R (2014) Predicting body fat percentage based on gender, age and BMI by using artificial neural networks. Comput Methods Programs Biomed 113(2):610–619. https://doi.org/10.1016/j.cmpb.2013.10.013

    Article  PubMed  Google Scholar 

  • Kupusinac A, Stokić E, Lečić D, Tomić-Naglić D, Srdić-Galić B (2015) Gender-, age-, and BMI-specific threshold values of sagittal abdominal diameter obtained by artificial neural networks. J Med Biol Eng 35(6):783–788. https://doi.org/10.1007/s40846-015-0090-z

    Article  Google Scholar 

  • Malasinghe LP, Ramzan N, Dahal K (2019) Remote patient monitoring: a comprehensive study. J Ambient Intell Human Comput 10(1):57–76. https://doi.org/10.1007/s12652-017-0598-x

    Article  Google Scholar 

  • Meeuwsen S, Horgan G, Elia M (2010) The relationship between BMI and percent body fat, measured by bioelectrical impedance, in a large adult sample is curvilinear and influenced by age and sex. Clin Nutr 29(5):560–566

    Article  CAS  PubMed  Google Scholar 

  • Misra A, Vikram NK (2003) Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots. Nutrition 19(5):457–466

    Article  PubMed  Google Scholar 

  • Orozco-Beltran D, Gil-Guillen VF, Redon J, Martin-Moreno JM, Pallares-Carratala V, Navarro-Perez J, Valls-Roca F, Sanchis-Domenech C, Fernandez-Gimenez A, Perez-Navarro A et al (2017) Lipid profile, cardiovascular disease and mortality in a mediterranean high-risk population: the ESCARVAL-RISK study. PLoS ONE 12(10):e0186196. https://doi.org/10.1371/journal.pone.0186196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard RR, Cook RD (1984) Cross-validation of regression models. J Am Stat Assoc 79(387):575–583

    Article  MathSciNet  Google Scholar 

  • Risérus U, De Faire U, Berglund L, Hellénius ML (2010) Sagittal abdominal diameter as a screening tool in clinical research: cutoffs for cardiometabolic risk. J Obes. https://doi.org/10.1155/2010/757939

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao J (1993) Linear model selection by cross-validation. J Am Stat Assoc 88(422):486–494

    Article  MathSciNet  Google Scholar 

  • Stevens J, Katz EG, Huxley RR (2010) Associations between gender, age and waist circumference. Eur J Clin Nutr 64(1):6–15

    Article  CAS  PubMed  Google Scholar 

  • Stokić E, Galić BS, Kupusinac A, Doroslovački R (2013) Estimating SAD low-limits for the adverse metabolic profile by using artificial neural networks. TEM J 2(2):115–119

    Google Scholar 

  • Szczygielska A, Widomska S, Jaraszkiewicz M, Knera P, Muc K (2003) Blood lipids profile in obese or overweight patients. Ann Univ Mariae Curie-Sklodowska Sect D Med 58(2):343–9

    Google Scholar 

  • Tabachnick BG, Fidell LS, Ullman JB (2007) Using multivariate statistics, 5th edn. Pearson, London

    Google Scholar 

  • Voss R, Cullen P, Schulte H, Assmann G (2002) Prediction of risk of coronary events in middle-aged men in the prospective cardiovascular Münster study (PROCAM) using neural networks. Int J Epidemiol 31(6):1253–1262. https://doi.org/10.1093/ije/31.6.1253

    Article  PubMed  Google Scholar 

  • Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N (2017) Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE 12(4):e0174944

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2000) Obesity: preventing and managing the global epidemic: report of a WHO consultation. Technical report 894

Download references

Acknowledgements

This work was partially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia within the Projects: ON 174026 and III 044006, and by the Provincial Secretariat for Higher Education and Scientific Research of the Autonomous Province of Vojvodina within the Projects: 114-451-2856/2016-02 and 142-451-3557/2017-01.

Funding

This study was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (ON 174026 and III 044006) and by the Provincial Secretariat for Higher Education and Scientific Research of the Autonomous Province of Vojvodina (114-451-2856/2016-02 and 142-451-3557/2017-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rade Doroslovački.

Ethics declarations

Conflict of interest

The authors hereby declare that they have no conflicts of interest.

Ethical approval

This research was approved by Ethical Committee of the Clinical Centre of Vojvodina, Republic of Serbia (No. 00–20/354). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 4, 5, 6, 7, 8, 9, 10 and 11.

Table 4 Prediction of TCH by using input vectors \(\bar{X^5_1}\), \(\bar{X^5_2}\), \(\bar{X^5_3}\) and \(\bar{X^5_4}\)
Table 5 Prediction of TCH by using input vectors \(\bar{X^6_1}\), \(\bar{X^6_2}\), \(\bar{X^6_3}\), \(\bar{X^6_4}\), \(\bar{X^6_5}\) and \(\bar{X^6_6}\)
Table 6 Prediction of TG by using input vectors \(\bar{X^5_1}\), \(\bar{X^5_2}\), \(\bar{X^5_3}\) and \(\bar{X^5_4}\)
Table 7 Prediction of TG by using input vectors \(\bar{X^6_1}\), \(\bar{X^6_2}\), \(\bar{X^6_3}\), \(\bar{X^6_4}\), \(\bar{X^6_5}\) and \(\bar{X^6_6}\)
Table 8 Prediction of LDL by using input vectors \(\bar{X^5_1}\), \(\bar{X^5_2}\), \(\bar{X^5_3}\) and \(\bar{X^5_4}\)
Table 9 Prediction of LDL by using input vectors \(\bar{X^6_1}\), \(\bar{X^6_2}\), \(\bar{X^6_3}\), \(\bar{X^6_4}\), \(\bar{X^6_5}\) and \(\bar{X^6_6}\)
Table 10 Prediction of HDL by using input vectors \(\bar{X^5_1}\), \(\bar{X^5_2}\), \(\bar{X^5_3}\) and \(\bar{X^5_4}\)
Table 11 Prediction of HDL by using input vectors \(\bar{X^6_1}\), \(\bar{X^6_2}\), \(\bar{X^6_3}\), \(\bar{X^6_4}\), \(\bar{X^6_5}\) and \(\bar{X^6_6}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrbaški, M., Doroslovački, R., Kupusinac, A. et al. Lipid profile prediction based on artificial neural networks. J Ambient Intell Human Comput 14, 15523–15533 (2023). https://doi.org/10.1007/s12652-019-01374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-019-01374-3

Keywords

Navigation