Skip to main content

Advertisement

Log in

High-dimensional microarray dataset classification using an improved adam optimizer (iAdam)

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Classifying data samples into their respective categories is a challenging task, especially when the dataset has more features and only a few samples. A robust model is essential for the accurate classification of data samples. The logistic sigmoid model is one of the simplest model for binary classification. Among the various optimization techniques of the sigmoid function, Adam optimization technique iteratively updates network weights based on training data. Traditional Adam optimizer fails to converge model within certain epochs when the initial values for parameters are situated at the gentle region of the error surface. The continuous movement of the convergence curve in the direction of history can overshoot the goal and oscillate back and forth incessantly before converging to the global minima. The traditional Adam optimizer with a higher learning rate collapses after several epochs for the high-dimensional dataset. The proposed Improved Adam (iAdam) technique is a combination of the look-ahead mechanism and adaptive learning rate for each parameter. It improves the momentum of traditional Adam by evaluating the gradient after applying the current velocity. iAdam also acts as the correction factor to the momentum of Adam. Further, it works efficiently for the high-dimensional dataset and converges considerably to the smallest error within the specified epochs even at higher learning rates. The proposed technique is compared with several traditional methods which demonstrates that iAdam is suitable for the classification of high-dimensional data and it also prevents the model from overfitting by effectively handling bias-variance trade-offs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

Download references

Acknowledgements

This study was funded by the Department of Science and Technology, India under the Interdisciplinary Cyber Physical Systems (ICPS) scheme (Grant no. T-54).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utkarsh Mahadeo Khaire.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaire, U.M., Dhanalakshmi, R. High-dimensional microarray dataset classification using an improved adam optimizer (iAdam). J Ambient Intell Human Comput 11, 5187–5204 (2020). https://doi.org/10.1007/s12652-020-01832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-01832-3

Keywords