Skip to main content

Advertisement

Log in

IFODPSO-based multi-level image segmentation scheme aided with Masi entropy

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

This article presents an improved version of Fractional Order Darwinian PSO (IFODPSO) for segmenting 3D histogram-based color images at multiple levels of Berkley Segmentation Dataset (BSDS500). The success of convergence and accuracy rate of FODPSO algorithm depends on the value of fractional coefficient. This concept may provide drawback to the algorithm specially for multilevel problems of large dataset. So, to overcome the full dependency on fractional coefficient, delta potential model of quantum mechanics has been incorporated with FODPSO for updating the particle’s present as well as global position by destroying the worst particles (solutions), formulated using the introduction of the context parameter. Multi-level Massi Entropy (MME), of current interest, has been chosen here as the objective function for finding the threshold values in combination with IFODPSO. Further, the small segmented regions have been removed or merged into bigger regions for showing the better discrimination between different segmented objects. The effectiveness of the proposed MME-IFODPSO algorithm has been extensively investigated in terms of statistically and qualitatively in terms of the fidelity parameters with the state-of-art approaches and it has been found that the proposed method has improved at least 2–5% to the conventional methods in terms of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abutaleb AS (1989) Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput Vis Graphics Image Process 47(1):22–32

    Google Scholar 

  • Ahilan A, Manogaran G, Raja C, Kadry S, Kumar S, Kumar CA, Jarin T, Krishnamoorthy S, Kumar PM, Babu GC et al (2019) Segmentation by fractional order darwinian particle swarm optimization based multilevel thresholding and improved lossless prediction based compression algorithm for medical images. IEEE Access 7:89570–89580

    Google Scholar 

  • Ait-Aoudia S, Guerrout EH, Mahiou R (2014) Medical image segmentation using particle swarm optimization. In: 2014 18th International Conference on Information Visualisation, IEEE, pp 287–291

  • Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput 13(6):3066–3091

    Google Scholar 

  • Arifin AZ, Asano A (2006) Image segmentation by histogram thresholding using hierarchical cluster analysis. Pattern Recognit Lett 27(13):1515–1521

    Google Scholar 

  • Arora S, Acharya J, Verma A, Panigrahi PK (2008) Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recognit Lett 29(2):119–125

    Google Scholar 

  • Barghout L, Sheynin J (2013) Real-world scene perception and perceptual organization: lessons from computer vision. J Vis 13(9):709

    Google Scholar 

  • Bhandari AK, Kumar A, Singh GK (2015a) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using kapur’s, otsu and tsallis functions. Exp Syst Appl 42(3):1573–1601

    Google Scholar 

  • Bhandari AK, Kumar A, Singh GK (2015b) Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Exp Syst Appl 42(22):8707–8730

    Google Scholar 

  • Bhandari AK, Kumar A, Chaudhary S, Singh GK (2016) A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms. Exp Syst Appl 63:112–133

    Google Scholar 

  • Chakraborty R, Sushil R, Garg M (2019a) An improved pso-based multilevel image segmentation technique using minimum cross-entropy thresholding. Arab J Sci Eng 44(4):3005–3020

    Google Scholar 

  • Chakraborty R, Sushil R, Garg ML (2019b) Icqpso-based multilevel thresholding scheme applied on colour image segmentation. IET Signal Process 13(3):387–395

    Google Scholar 

  • Chander A, Chatterjee A, Siarry P (2011) A new social and momentum component adaptive pso algorithm for image segmentation. Exp Syst Appl 38(5):4998–5004

    Google Scholar 

  • Chen YL, Wu BF (2009) A multi-plane approach for text segmentation of complex document images. Pattern Recognit 42(7):1419–1444

    MATH  Google Scholar 

  • Chen S, Cao L, Wang Y, Liu J, Tang X (2010) Image segmentation by map-ml estimations. IEEE Trans Image Process 19(9):2254–2264

    MathSciNet  MATH  Google Scholar 

  • Cheng HD, Jiang X, Wang J (2002) Color image segmentation based on homogram thresholding and region merging. Pattern Recognit 35(2):373–393

    MATH  Google Scholar 

  • Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 5:603–619

    Google Scholar 

  • Couceiro MS, Rocha RP, Ferreira NF, Machado JT (2012) Introducing the fractional-order darwinian pso. Signal Image Video Process 6(3):343–350

    Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18

    Google Scholar 

  • Dey V, Zhang Y, Zhong M (2010) A review on image segmentation techniques with remote sensing perspective. In: Wagner W, Székely B (eds) ISPRS TC VII symposium – 100 years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, vol. XXXVIII, Part 7A

  • Dirami A, Hammouche K, Diaf M, Siarry P (2013) Fast multilevel thresholding for image segmentation through a multiphase level set method. Signal Process 93(1):139–153

    Google Scholar 

  • Du J (2008) Property of tsallis entropy and principle of entropy increase. arXiv preprint arXiv:08023424

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, pp 39–43

  • Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Google Scholar 

  • Fu KS, Mui J (1981) A survey on image segmentation. Pattern Recognit 13(1):3–16

    MathSciNet  Google Scholar 

  • Gao H, Xu W, Sun J, Tang Y (2010) Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE Trans Instrum Meas 59(4):934–946

    Google Scholar 

  • García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special session on real parameter optimization. J Heuristics 15(6):617

    MATH  Google Scholar 

  • Garcia-Ugarriza L, Saber E, Amuso V, Shaw M, Bhaskar R (2008) Automatic color image segmentation by dynamic region growth and multimodal merging of color and texture information. In: Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, IEEE, pp 961–964

  • Ghamisi P, Couceiro MS, Martins FM, Benediktsson JA (2014) Multilevel image segmentation based on fractional-order darwinian particle swarm optimization. IEEE Trans Geosci Remote Sens 52(5):2382–2394

    Google Scholar 

  • Girden ER (1992) ANOVA: repeated measures. Sage University paper series on quantitative applications in the social sciences, 07-084. Sage, Newbury Park, CA

  • Hammouche K, Diaf M, Siarry P (2008) A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vis Image Understanding 109(2):163–175

    Google Scholar 

  • Han Y, Feng XC, Baciu G (2013) Variational and pca based natural image segmentation. Pattern Recognit 46(7):1971–1984

    Google Scholar 

  • Huang R, Sang N, Luo D, Tang Q (2011) Image segmentation via coherent clustering in l$\ast $a$\ast $b$\ast $ color space. Pattern Recognit Lett 32(7):891–902

    Google Scholar 

  • Kandhway P, Bhandari AK (2019) A water cycle algorithm-based multilevel thresholding system for color image segmentation using masi entropy. Circ Syst Signal Proces 38(7):3058–3106

    Google Scholar 

  • Kapur JN, Sahoo PK, Wong AK (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graphics Image Process 29(3):273–285

    Google Scholar 

  • Kar S, Sharma KD, Maitra M (2015) Gene selection from microarray gene expression data for classification of cancer subgroups employing pso and adaptive k-nearest neighborhood technique. Exp Syst Appl 42(1):612–627

    Google Scholar 

  • Khairuzzaman AKM, Chaudhury S (2017) Multilevel thresholding using grey wolf optimizer for image segmentation. Exp Syst Appl 86:64–76

    Google Scholar 

  • Krinidis M, Pitas I (2009) Color texture segmentation based on the modal energy of deformable surfaces. IEEE Trans Image Process 18(7):1613–1622

    MathSciNet  MATH  Google Scholar 

  • Li C, Tam PKS (1998) An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit Lett 19(8):771–776

    MATH  Google Scholar 

  • Liu S, Zhou K, Qi H, Liu J (2019) Improved hybrid particle swarm optimisation for image segmentation. Int J Parallel Emerg Distrib Syst. https://doi.org/10.1080/17445760.2019.1689568

    Article  Google Scholar 

  • Luo Q, Khoshgoftaar TM (2006) Unsupervised multiscale color image segmentation based on mdl principle. IEEE Trans Image Process 15(9):2755–2761

    Google Scholar 

  • Maitra M, Chatterjee A (2008) A hybrid cooperative-comprehensive learning based pso algorithm for image segmentation using multilevel thresholding. Exp Syst Appl 34(2):1341–1350

    Google Scholar 

  • Martin D, Fowlkes C, Tal D, Malik J et al (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings eighth IEEE international conference on computer vision. ICCV 2001, vol 2, pp 416–423

  • Masi M (2005) A step beyond tsallis and rényi entropies. Phys Lett A 338(3–5):217–224

    MathSciNet  MATH  Google Scholar 

  • Meila M (2005) Comparing clusterings: an axiomatic view. In: Proceedings of the 22nd international conference on Machine learning, ACM, pp 577–584

  • Mignotte M (2008) Segmentation by fusion of histogram-based $ k $-means clusters in different color spaces. IEEE Trans Image Process 17(5):780–787

    MathSciNet  Google Scholar 

  • Mignotte M (2011) A de-texturing and spatially constrained k-means approach for image segmentation. Pattern Recognit Lett 32(2):359–367

    Google Scholar 

  • Naidu M, Kumar PR, Chiranjeevi K (2017) Shannon and fuzzy entropy based evolutionary image thresholding for image segmentation. Alexandria Eng J 57(3):1643–1655

    Google Scholar 

  • Namasudra S, Roy P (2017) Time saving protocol for data accessing in cloud computing. IET Commun 11(10):1558–1565

    Google Scholar 

  • Namasudra S, Roy P, Vijayakumar P, Audithan S, Balusamy B (2017) Time efficient secure DNA based access control model for cloud computing environment. Future Gener Comput Syst 73:90–105

    Google Scholar 

  • Namasudra S, Chakraborty R, Kadry S, Manogaran G, Rawal BS (2020) FAST: fast accessing scheme for data transmission in cloud computing. Peer-to-Peer Netw Appl. https://doi.org/10.1007/s12083-020-00959-6

    Article  Google Scholar 

  • Nie F, Zhang P, Li J, Ding D (2017) A novel generalized entropy and its application in image thresholding. Signal Process 134:23–34

    Google Scholar 

  • Nock R, Nielsen F (2004) Statistical region merging. IEEE Trans Pattern Anal Mach Intell 26(11):1452–1458

    Google Scholar 

  • Oliva D, Osuna-Enciso V, Cuevas E, Pajares G, Pérez-Cisneros M, Zaldívar D (2015) Improving segmentation velocity using an evolutionary method. Exp Syst Appl 42(14):5874–5886

    Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    MathSciNet  Google Scholar 

  • Pantofaru C, Hebert M (2005) A comparison of image segmentation algorithms. Tech. rep, Citeseer

    Google Scholar 

  • Pare S, Bhandari A, Kumar A, Singh G (2019) Rényi’s entropy and bat algorithm based color image multilevel thresholding. In: Machine intelligence and signal analysis, vol 748. Springer, pp 71–84

  • Peng X, Lin Y, Zhang LH (2019) An improved pso-fcm algorithm for image segmentation. In: IOP conference series: earth and environmental science, vol 267, issue 4. IOP Publishing, p 042081

  • Perez A, Gonzalez RC (1987) An iterative thresholding algorithm for image segmentation. IEEE Trans Pattern Anal Mach Intell 6:742–751

    Google Scholar 

  • Pham TX, Siarry P, Oulhadj H (2018) Integrating fuzzy entropy clustering with an improved pso for mri brain image segmentation. Appl Soft Comput 65:230–242

    Google Scholar 

  • Pires ES, Machado JT, de Moura Oliveira P, Cunha JB, Mendes L (2010) Particle swarm optimization with fractional-order velocity. Nonlinear Dyn 61(1–2):295–301

    MATH  Google Scholar 

  • Puranik P, Bajaj P, Abraham A, Palsodkar P, Deshmukh A (2009) Human perception-based color image segmentation using comprehensive learning particle swarm optimization. In: 2009 Second International Conference on Emerging Trends in Engineering & Technology, IEEE, pp 630–635

  • Reddi S, Rudin S, Keshavan H (1984) An optimal multiple threshold scheme for image segmentation. IEEE Trans Syst Man Cybern 4:661–665

    Google Scholar 

  • Revol C, Jourlin M (1997) A new minimum variance region growing algorithm for image segmentation. Pattern Recognit Lett 18(3):249–258

    Google Scholar 

  • Sahoo PK, Arora G (2004) A thresholding method based on two-dimensional renyi’s entropy. Pattern Recognit 37(6):1149–1161

    MATH  Google Scholar 

  • Sarkar S, Paul S, Burman R, Das S, Chaudhuri SS (2014) A fuzzy entropy based multi-level image thresholding using differential evolution. In: International conference on swarm, evolutionary, and memetic computing, vol 8947. Springer, pp 386–395

  • Sarkar S, Das S, Chaudhuri SS (2015) A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. Pattern Recognit Lett 54:27–35

    Google Scholar 

  • Sathya P, Kayalvizhi R (2010) Pso-based tsallis thresholding selection procedure for image segmentation. Int J Comput Appl 5(4):39–46

    Google Scholar 

  • Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electr Imaging 13(1):146–166

    Google Scholar 

  • Shi J, Malik J (2000) Normalized cuts and image segmentation. Departmental Papers (CIS) p 107

  • Shubham S, Bhandari AK (2019) A generalized masi entropy based efficient multilevel thresholding method for color image segmentation. Multimed Tools Appl 78(12): 17197–17238

    Google Scholar 

  • Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753), IEEE, vol 1, pp 325–331

  • Suresh S, Lal S (2016) An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions. Exp Syst Appl 58:184–209

    Google Scholar 

  • Suresh S, Lal S (2017) Multilevel thresholding based on chaotic darwinian particle swarm optimization for segmentation of satellite images. Appl Soft Comput 55:503–522

    Google Scholar 

  • Tao W, Jin H, Liu L (2007) Object segmentation using ant colony optimization algorithm and fuzzy entropy. Pattern Recognit Lett 28(7):788–796

    Google Scholar 

  • Tillett J, Rao T, Sahin F, Rao R (2005) Darwinian particle swarm optimization. Accessed from https://scholarworks.rit.edu/other/574

  • Upadhyay P, Chhabra JK (2019) Kapur’s entropy based optimal multilevel image segmentation using crow search algorithm. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2019.105522

    Article  Google Scholar 

  • Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 6:583–598

    Google Scholar 

  • Vu HN, Tran TA, Na IS, Kim SH (2015) Automatic extraction of text regions from document images by multilevel thresholding and k-means clustering. In: Computer and Information Science (ICIS), 2015 IEEE/ACIS 14th International Conference on, IEEE, pp 329–334

  • Wang S, Fl Chung, Xiong F (2008) A novel image thresholding method based on parzen window estimate. Pattern Recognit 41(1):117–129

    MATH  Google Scholar 

  • Wang Y, Zhang G, Zhang X (2019a) Multilevel image thresholding using tsallis entropy and cooperative pigeon-inspired optimization bionic algorithm. J Bionic Eng 16(5):954–964

    Google Scholar 

  • Wang YY, Peng WX, Qiu CH, Jiang J, Xia SR (2019b) Fractional-order darwinian pso-based feature selection for media-adventitia border detection in intravascular ultrasound images. Ultrasonics 92:1–7

    Google Scholar 

  • Weszka JS (1978) A survey of threshold selection techniques. Comput Graphics Image Process 7(2):259–265

    Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometr Bull 1(6):80–83

    Google Scholar 

  • Yang AY, Wright J, Ma Y, Sastry SS (2008) Unsupervised segmentation of natural images via lossy data compression. Comput Vis Image Understanding 110(2):212–225

    Google Scholar 

  • Yang F, Sun T, Zhang C (2009) An efficient hybrid data clustering method based on k-harmonic means and particle swarm optimization. Exp Syst Appl 36(6):9847–9852

    Google Scholar 

  • Yu Z, Au OC, Zou R, Yu W, Tian J (2010) An adaptive unsupervised approach toward pixel clustering and color image segmentation. Pattern Recognit 43(5):1889–1906

    MATH  Google Scholar 

  • Zahara E, Fan SKS, Tsai DM (2005) Optimal multi-thresholding using a hybrid optimization approach. Pattern Recognit Lett 26(8):1082–1095

    Google Scholar 

  • Zhang H, Fritts JE, Goldman SA (2008) Image segmentation evaluation: a survey of unsupervised methods. Comput Visi Image Understand 110(2):260–280

    Google Scholar 

  • Zheng Y, Jeon B, Xu D, Wu Q, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy c-means algorithm. J Intell Fuzzy Syst 28(2):961–973

    Google Scholar 

  • Zhuge H, Sun X, Namasudra S (2019) An improved attribute-based encryption technique towards the data security in cloud computing. Concurrency Comput Pract Experience 31(3):e4364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupak Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, R., Verma, G. & Namasudra, S. IFODPSO-based multi-level image segmentation scheme aided with Masi entropy. J Ambient Intell Human Comput 12, 7793–7811 (2021). https://doi.org/10.1007/s12652-020-02506-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02506-w

Keywords

Navigation