Abstract
This article presents an improved version of Fractional Order Darwinian PSO (IFODPSO) for segmenting 3D histogram-based color images at multiple levels of Berkley Segmentation Dataset (BSDS500). The success of convergence and accuracy rate of FODPSO algorithm depends on the value of fractional coefficient. This concept may provide drawback to the algorithm specially for multilevel problems of large dataset. So, to overcome the full dependency on fractional coefficient, delta potential model of quantum mechanics has been incorporated with FODPSO for updating the particle’s present as well as global position by destroying the worst particles (solutions), formulated using the introduction of the context parameter. Multi-level Massi Entropy (MME), of current interest, has been chosen here as the objective function for finding the threshold values in combination with IFODPSO. Further, the small segmented regions have been removed or merged into bigger regions for showing the better discrimination between different segmented objects. The effectiveness of the proposed MME-IFODPSO algorithm has been extensively investigated in terms of statistically and qualitatively in terms of the fidelity parameters with the state-of-art approaches and it has been found that the proposed method has improved at least 2–5% to the conventional methods in terms of accuracy.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12652-020-02506-w/MediaObjects/12652_2020_2506_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12652-020-02506-w/MediaObjects/12652_2020_2506_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12652-020-02506-w/MediaObjects/12652_2020_2506_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12652-020-02506-w/MediaObjects/12652_2020_2506_Fig4_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12652-020-02506-w/MediaObjects/12652_2020_2506_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12652-020-02506-w/MediaObjects/12652_2020_2506_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12652-020-02506-w/MediaObjects/12652_2020_2506_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12652-020-02506-w/MediaObjects/12652_2020_2506_Fig8_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12652-020-02506-w/MediaObjects/12652_2020_2506_Fig9_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs12652-020-02506-w/MediaObjects/12652_2020_2506_Fig10_HTML.jpg)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abutaleb AS (1989) Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput Vis Graphics Image Process 47(1):22–32
Ahilan A, Manogaran G, Raja C, Kadry S, Kumar S, Kumar CA, Jarin T, Krishnamoorthy S, Kumar PM, Babu GC et al (2019) Segmentation by fractional order darwinian particle swarm optimization based multilevel thresholding and improved lossless prediction based compression algorithm for medical images. IEEE Access 7:89570–89580
Ait-Aoudia S, Guerrout EH, Mahiou R (2014) Medical image segmentation using particle swarm optimization. In: 2014 18th International Conference on Information Visualisation, IEEE, pp 287–291
Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput 13(6):3066–3091
Arifin AZ, Asano A (2006) Image segmentation by histogram thresholding using hierarchical cluster analysis. Pattern Recognit Lett 27(13):1515–1521
Arora S, Acharya J, Verma A, Panigrahi PK (2008) Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recognit Lett 29(2):119–125
Barghout L, Sheynin J (2013) Real-world scene perception and perceptual organization: lessons from computer vision. J Vis 13(9):709
Bhandari AK, Kumar A, Singh GK (2015a) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using kapur’s, otsu and tsallis functions. Exp Syst Appl 42(3):1573–1601
Bhandari AK, Kumar A, Singh GK (2015b) Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Exp Syst Appl 42(22):8707–8730
Bhandari AK, Kumar A, Chaudhary S, Singh GK (2016) A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms. Exp Syst Appl 63:112–133
Chakraborty R, Sushil R, Garg M (2019a) An improved pso-based multilevel image segmentation technique using minimum cross-entropy thresholding. Arab J Sci Eng 44(4):3005–3020
Chakraborty R, Sushil R, Garg ML (2019b) Icqpso-based multilevel thresholding scheme applied on colour image segmentation. IET Signal Process 13(3):387–395
Chander A, Chatterjee A, Siarry P (2011) A new social and momentum component adaptive pso algorithm for image segmentation. Exp Syst Appl 38(5):4998–5004
Chen YL, Wu BF (2009) A multi-plane approach for text segmentation of complex document images. Pattern Recognit 42(7):1419–1444
Chen S, Cao L, Wang Y, Liu J, Tang X (2010) Image segmentation by map-ml estimations. IEEE Trans Image Process 19(9):2254–2264
Cheng HD, Jiang X, Wang J (2002) Color image segmentation based on homogram thresholding and region merging. Pattern Recognit 35(2):373–393
Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 5:603–619
Couceiro MS, Rocha RP, Ferreira NF, Machado JT (2012) Introducing the fractional-order darwinian pso. Signal Image Video Process 6(3):343–350
Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18
Dey V, Zhang Y, Zhong M (2010) A review on image segmentation techniques with remote sensing perspective. In: Wagner W, Székely B (eds) ISPRS TC VII symposium – 100 years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, vol. XXXVIII, Part 7A
Dirami A, Hammouche K, Diaf M, Siarry P (2013) Fast multilevel thresholding for image segmentation through a multiphase level set method. Signal Process 93(1):139–153
Du J (2008) Property of tsallis entropy and principle of entropy increase. arXiv preprint arXiv:08023424
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, pp 39–43
Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181
Fu KS, Mui J (1981) A survey on image segmentation. Pattern Recognit 13(1):3–16
Gao H, Xu W, Sun J, Tang Y (2010) Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE Trans Instrum Meas 59(4):934–946
García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special session on real parameter optimization. J Heuristics 15(6):617
Garcia-Ugarriza L, Saber E, Amuso V, Shaw M, Bhaskar R (2008) Automatic color image segmentation by dynamic region growth and multimodal merging of color and texture information. In: Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, IEEE, pp 961–964
Ghamisi P, Couceiro MS, Martins FM, Benediktsson JA (2014) Multilevel image segmentation based on fractional-order darwinian particle swarm optimization. IEEE Trans Geosci Remote Sens 52(5):2382–2394
Girden ER (1992) ANOVA: repeated measures. Sage University paper series on quantitative applications in the social sciences, 07-084. Sage, Newbury Park, CA
Hammouche K, Diaf M, Siarry P (2008) A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vis Image Understanding 109(2):163–175
Han Y, Feng XC, Baciu G (2013) Variational and pca based natural image segmentation. Pattern Recognit 46(7):1971–1984
Huang R, Sang N, Luo D, Tang Q (2011) Image segmentation via coherent clustering in l$\ast $a$\ast $b$\ast $ color space. Pattern Recognit Lett 32(7):891–902
Kandhway P, Bhandari AK (2019) A water cycle algorithm-based multilevel thresholding system for color image segmentation using masi entropy. Circ Syst Signal Proces 38(7):3058–3106
Kapur JN, Sahoo PK, Wong AK (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graphics Image Process 29(3):273–285
Kar S, Sharma KD, Maitra M (2015) Gene selection from microarray gene expression data for classification of cancer subgroups employing pso and adaptive k-nearest neighborhood technique. Exp Syst Appl 42(1):612–627
Khairuzzaman AKM, Chaudhury S (2017) Multilevel thresholding using grey wolf optimizer for image segmentation. Exp Syst Appl 86:64–76
Krinidis M, Pitas I (2009) Color texture segmentation based on the modal energy of deformable surfaces. IEEE Trans Image Process 18(7):1613–1622
Li C, Tam PKS (1998) An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit Lett 19(8):771–776
Liu S, Zhou K, Qi H, Liu J (2019) Improved hybrid particle swarm optimisation for image segmentation. Int J Parallel Emerg Distrib Syst. https://doi.org/10.1080/17445760.2019.1689568
Luo Q, Khoshgoftaar TM (2006) Unsupervised multiscale color image segmentation based on mdl principle. IEEE Trans Image Process 15(9):2755–2761
Maitra M, Chatterjee A (2008) A hybrid cooperative-comprehensive learning based pso algorithm for image segmentation using multilevel thresholding. Exp Syst Appl 34(2):1341–1350
Martin D, Fowlkes C, Tal D, Malik J et al (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings eighth IEEE international conference on computer vision. ICCV 2001, vol 2, pp 416–423
Masi M (2005) A step beyond tsallis and rényi entropies. Phys Lett A 338(3–5):217–224
Meila M (2005) Comparing clusterings: an axiomatic view. In: Proceedings of the 22nd international conference on Machine learning, ACM, pp 577–584
Mignotte M (2008) Segmentation by fusion of histogram-based $ k $-means clusters in different color spaces. IEEE Trans Image Process 17(5):780–787
Mignotte M (2011) A de-texturing and spatially constrained k-means approach for image segmentation. Pattern Recognit Lett 32(2):359–367
Naidu M, Kumar PR, Chiranjeevi K (2017) Shannon and fuzzy entropy based evolutionary image thresholding for image segmentation. Alexandria Eng J 57(3):1643–1655
Namasudra S, Roy P (2017) Time saving protocol for data accessing in cloud computing. IET Commun 11(10):1558–1565
Namasudra S, Roy P, Vijayakumar P, Audithan S, Balusamy B (2017) Time efficient secure DNA based access control model for cloud computing environment. Future Gener Comput Syst 73:90–105
Namasudra S, Chakraborty R, Kadry S, Manogaran G, Rawal BS (2020) FAST: fast accessing scheme for data transmission in cloud computing. Peer-to-Peer Netw Appl. https://doi.org/10.1007/s12083-020-00959-6
Nie F, Zhang P, Li J, Ding D (2017) A novel generalized entropy and its application in image thresholding. Signal Process 134:23–34
Nock R, Nielsen F (2004) Statistical region merging. IEEE Trans Pattern Anal Mach Intell 26(11):1452–1458
Oliva D, Osuna-Enciso V, Cuevas E, Pajares G, Pérez-Cisneros M, Zaldívar D (2015) Improving segmentation velocity using an evolutionary method. Exp Syst Appl 42(14):5874–5886
Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66
Pantofaru C, Hebert M (2005) A comparison of image segmentation algorithms. Tech. rep, Citeseer
Pare S, Bhandari A, Kumar A, Singh G (2019) Rényi’s entropy and bat algorithm based color image multilevel thresholding. In: Machine intelligence and signal analysis, vol 748. Springer, pp 71–84
Peng X, Lin Y, Zhang LH (2019) An improved pso-fcm algorithm for image segmentation. In: IOP conference series: earth and environmental science, vol 267, issue 4. IOP Publishing, p 042081
Perez A, Gonzalez RC (1987) An iterative thresholding algorithm for image segmentation. IEEE Trans Pattern Anal Mach Intell 6:742–751
Pham TX, Siarry P, Oulhadj H (2018) Integrating fuzzy entropy clustering with an improved pso for mri brain image segmentation. Appl Soft Comput 65:230–242
Pires ES, Machado JT, de Moura Oliveira P, Cunha JB, Mendes L (2010) Particle swarm optimization with fractional-order velocity. Nonlinear Dyn 61(1–2):295–301
Puranik P, Bajaj P, Abraham A, Palsodkar P, Deshmukh A (2009) Human perception-based color image segmentation using comprehensive learning particle swarm optimization. In: 2009 Second International Conference on Emerging Trends in Engineering & Technology, IEEE, pp 630–635
Reddi S, Rudin S, Keshavan H (1984) An optimal multiple threshold scheme for image segmentation. IEEE Trans Syst Man Cybern 4:661–665
Revol C, Jourlin M (1997) A new minimum variance region growing algorithm for image segmentation. Pattern Recognit Lett 18(3):249–258
Sahoo PK, Arora G (2004) A thresholding method based on two-dimensional renyi’s entropy. Pattern Recognit 37(6):1149–1161
Sarkar S, Paul S, Burman R, Das S, Chaudhuri SS (2014) A fuzzy entropy based multi-level image thresholding using differential evolution. In: International conference on swarm, evolutionary, and memetic computing, vol 8947. Springer, pp 386–395
Sarkar S, Das S, Chaudhuri SS (2015) A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. Pattern Recognit Lett 54:27–35
Sathya P, Kayalvizhi R (2010) Pso-based tsallis thresholding selection procedure for image segmentation. Int J Comput Appl 5(4):39–46
Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electr Imaging 13(1):146–166
Shi J, Malik J (2000) Normalized cuts and image segmentation. Departmental Papers (CIS) p 107
Shubham S, Bhandari AK (2019) A generalized masi entropy based efficient multilevel thresholding method for color image segmentation. Multimed Tools Appl 78(12): 17197–17238
Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753), IEEE, vol 1, pp 325–331
Suresh S, Lal S (2016) An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions. Exp Syst Appl 58:184–209
Suresh S, Lal S (2017) Multilevel thresholding based on chaotic darwinian particle swarm optimization for segmentation of satellite images. Appl Soft Comput 55:503–522
Tao W, Jin H, Liu L (2007) Object segmentation using ant colony optimization algorithm and fuzzy entropy. Pattern Recognit Lett 28(7):788–796
Tillett J, Rao T, Sahin F, Rao R (2005) Darwinian particle swarm optimization. Accessed from https://scholarworks.rit.edu/other/574
Upadhyay P, Chhabra JK (2019) Kapur’s entropy based optimal multilevel image segmentation using crow search algorithm. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2019.105522
Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 6:583–598
Vu HN, Tran TA, Na IS, Kim SH (2015) Automatic extraction of text regions from document images by multilevel thresholding and k-means clustering. In: Computer and Information Science (ICIS), 2015 IEEE/ACIS 14th International Conference on, IEEE, pp 329–334
Wang S, Fl Chung, Xiong F (2008) A novel image thresholding method based on parzen window estimate. Pattern Recognit 41(1):117–129
Wang Y, Zhang G, Zhang X (2019a) Multilevel image thresholding using tsallis entropy and cooperative pigeon-inspired optimization bionic algorithm. J Bionic Eng 16(5):954–964
Wang YY, Peng WX, Qiu CH, Jiang J, Xia SR (2019b) Fractional-order darwinian pso-based feature selection for media-adventitia border detection in intravascular ultrasound images. Ultrasonics 92:1–7
Weszka JS (1978) A survey of threshold selection techniques. Comput Graphics Image Process 7(2):259–265
Wilcoxon F (1945) Individual comparisons by ranking methods. Biometr Bull 1(6):80–83
Yang AY, Wright J, Ma Y, Sastry SS (2008) Unsupervised segmentation of natural images via lossy data compression. Comput Vis Image Understanding 110(2):212–225
Yang F, Sun T, Zhang C (2009) An efficient hybrid data clustering method based on k-harmonic means and particle swarm optimization. Exp Syst Appl 36(6):9847–9852
Yu Z, Au OC, Zou R, Yu W, Tian J (2010) An adaptive unsupervised approach toward pixel clustering and color image segmentation. Pattern Recognit 43(5):1889–1906
Zahara E, Fan SKS, Tsai DM (2005) Optimal multi-thresholding using a hybrid optimization approach. Pattern Recognit Lett 26(8):1082–1095
Zhang H, Fritts JE, Goldman SA (2008) Image segmentation evaluation: a survey of unsupervised methods. Comput Visi Image Understand 110(2):260–280
Zheng Y, Jeon B, Xu D, Wu Q, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy c-means algorithm. J Intell Fuzzy Syst 28(2):961–973
Zhuge H, Sun X, Namasudra S (2019) An improved attribute-based encryption technique towards the data security in cloud computing. Concurrency Comput Pract Experience 31(3):e4364
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chakraborty, R., Verma, G. & Namasudra, S. IFODPSO-based multi-level image segmentation scheme aided with Masi entropy. J Ambient Intell Human Comput 12, 7793–7811 (2021). https://doi.org/10.1007/s12652-020-02506-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-020-02506-w