Skip to main content
Log in

A scalable semantic data fusion framework for heterogeneous sensors data

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Data fusion is a fundamental research topic especially in the Internet of Things (IoT). A massive quantity of data is increasingly being generated by heterogeneous sensors which make data integration more difficult. A noticeable body of research has attempted to mitigate the incompatibility between the collected data to facilitate meaningful data integration between machines by using the semantic web technologies. However, there are still some critical issues including scalability and measurement unit conflicts. Therefore, this paper proposes a scalable semantic data fusion framework that aims at improving the scalability of data fusion and detecting and reconciling measurement unit conflicts. This framework is fully implemented to demonstrate its scalability during the process of data fusion, and its ability to handle measurement unit conflicts. Two experiments were conducted to evaluate the scalability and effectiveness of the proposed framework using real dataset that was collected from different sensors. To evaluate the scalability of the proposed framework, a set of queries was adapted and the average response time was calculated from the execution of every query. Whereas, the total number of the conflicts detected and resolved by the proposed framework were used to evaluate the effectiveness. Experimental results show that the proposed framework improves the scalability of data fusion among heterogeneous sensors’ data, and effective in detecting and resolving data unit conflicts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Balazinska M et al (2007) Data management in the worldwide sensor web. IEEE Pervasive Comput 6:30–40

    Article  Google Scholar 

  • Bijarbooneh FH, Du W, Ngai EC-H, Fu X, Liu J (2015) Cloud-assisted data fusion and sensor selection for internet of things. IEEE Internet Things J 3:257–268

    Article  Google Scholar 

  • Bizer C, Heath T, Berners-Lee T (2009) Linked data-the story so far semantic services, interoperability and web applications: emerging concepts, 205–227

  • Botts M, Percivall G, Reed C, Davidson J (2008) OGC® sensor web enablement: overview and high level architecture GeoSensor networks. pp 175–190

  • Bröring A et al (2011) New generation sensor web enablement. Sensors 11:2652–2699

    Article  Google Scholar 

  • CARS Program (2007) http://www.carsprogram.org/public/documents/CARSprogram.pdf. Accessed 20 Jan 2017

  • Castanedo F (2013) A review of data fusion techniques. Sci World J 2013:19. https://doi.org/10.1155/2013/704504

    Article  Google Scholar 

  • Chen P-Y, Cheng S-M, Chen K-C (2014) Information fusion to defend intentional attack in internet of things. IEEE Internet Things J 1:337–348

    Article  Google Scholar 

  • Coccoli M, Torre I (2014) Interacting with annotated objects in a semantic web of things application. J Vis Lang Comput 25:1012–1020

    Article  Google Scholar 

  • Compton M et al (2012) The SSN ontology of the W3C semantic sensor network incubator group. J Web Semant 17:25–32

    Article  Google Scholar 

  • Corchero Rodríguez A (2014) Design of a semantic and holistic achitecture for sensor data integration. University of Lleida

  • Cyganiak R, Bizer C, Garbers J, Maresch O, Becker C (2012) The D2RQ mapping language. http://d2rq.org/d2rq-language. Accessed 31 Dec 2019

  • De S, Elsaleh T, Barnaghi P, Meissner S (2012) An internet of things platform for real-world and digital objects . Scalable Comput Pract Exp 13:45–58

    Google Scholar 

  • Eunhye Ko T, Kim, Kim H (2018) Management platform of threats information in IoT environment. J Ambient Intell Human Comput 9:1167–1176

    Article  Google Scholar 

  • Evans D (2011) The internet of things: how the next evolution of the internet is changing everything. CISCO White Pap 1:1–11

    Google Scholar 

  • Ganzha M, Paprzycki M, Pawłowski W, Szmeja P, Wasielewska K (2017) Semantic interoperability in the internet of things: an overview from the INTER-IoT perspective. J Netw Comput Appl 81:111–124. https://doi.org/10.1016/j.jnca.2016.08.007

    Article  Google Scholar 

  • Guinard D, Trifa V, Mattern F, Wilde E (2011) From the internet of things to the web of things: resource-oriented architecture and best practices. Architecting the internet of things. Springer, Berlin, pp 97–129

    Chapter  Google Scholar 

  • Gyrard A (2013) An architecture to aggregate heterogeneous and semantic sensed data. In: Extended semantic web conference, Springer, pp 697–701

  • Gyrard Al (2015) Designing cross-domain semantic web of things applications. Télécom ParisTech

  • Gyrard A, Gomez D, Lanza J, Sanchez L, Agarwal R, Elsaleh T, FIESTA-IoT Ontology (2017) EU H2020 FIESTA-IoT. http://ontology.fiesta-iot.eu/ontologyDocs/fiesta-iot.html. Accessed 27 Mar 2017

  • Guo J, Xu L, Gong Z, Che CP, Chaudhry SS (2012) Semantic inference on heterogeneous e-marketplace activities. IEEE Trans Syst Man Cybern Part A Syst Hum 42:316–330

    Article  Google Scholar 

  • ITS (2017) https://www.standards.its.dot.gov/. Accessed 20 Jan 2017

  • Le-Phuoc D, Nguyen-Mau HQ, Parreira JX, Hauswirth M (2012) A middleware framework for scalable management of linked streams. J Web Semant 16:42–51

    Article  Google Scholar 

  • Marupudi SB (2016) Framework for semantic integration and scalable processing of city traffic events. Wright State University

  • Moraru A, Mladenic D, Vucnik M, Porcius M, Fortuna C, Mohorcic M (2011) Exposing real world information for the web of things. In: Proceedings of the 8th international workshop on information integration on the web: in conjunction with WWW 2011, ACM, p 6

  • Nagib AM, Hamza HS (2016) SIGHTED: a framework for semantic integration of heterogeneous sensor data on the internet of things. Proc Comput Sci 83:529–536

    Article  Google Scholar 

  • Nakamura EF, Loureiro AA, Frery AC (2007) Information fusion for wireless sensor networks: methods, models, and classifications. ACM Comput Surv 39:9

    Article  Google Scholar 

  • Patni H, Henson C, Sheth A (2010) Linked sensor data. In: Collaborative technologies and systems (CTS), 2010 international symposium on (2010) IEEE, pp 362–370

  • Patni H, Henson CA, Cooney M, Sheth AP, Thirunarayan K (2011) Demonstration: real-time semantic analysis of sensor streams. In: Proceedings of the 4th international workshop on semantic sensor networks, pp 119–122

  • Peter de Koning H, Rouquette N, Burkhart R, Espinoza H, Lefort L (2009) Library for quantity kinds and units: schema, based on QUDV model OMG SysML(TM). https://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu. Accessed 20 Jan 2017

  • Pfisterer D et al (2011) SPITFIRE: toward a semantic web of things. IEEE Commun Mag 49:40–48

    Article  Google Scholar 

  • Qin X, Gu Y (2011) Data fusion in the internet of things. Proc Eng 15:3023–3026. https://doi.org/10.1016/j.proeng.2011.08.567

    Article  Google Scholar 

  • Rodríguez-Valenzuela S, Holgado-Terriza JA, Gutiérrez-Guerrero JM, Muros-Cobos JL (2014) Distributed service-based approach for sensor data fusion in IoT. Environ Sens 14:19200–19228

    Article  Google Scholar 

  • Rubén Mulero V, Urosevic A, Almeida, Tatsiopoulos C (2018) Towards ambient assisted cities using linked data and data analysis. J Ambient Intell Human Comput 9:1573–1591

    Article  Google Scholar 

  • Ruta M, Scioscia F (2014) Framework and architecture for the semantic web of things

  • Salehi A (2010) Design and implementation of an efficient data stream processing system. École Polytechnique Fédérale de Lausanne

  • Samadian S, McManus B, Wilkinson MD (2014) Automatic detection and resolution of measurement-unit conflicts in aggregated data. BMC Med Genomics 7:S12

    Article  Google Scholar 

  • Sheth A, Henson C, Sahoo SS (2008) Semantic sensor web. IEEE Internet Comput 12

  • Sung W-T, Tsai M-H (2012) Data fusion of multi-sensor for IOT precise measurement based on improved PSO algorithms. Comput Math Appl 64:1450–1461. https://doi.org/10.1016/j.camwa.2012.03.092

    Article  Google Scholar 

  • Wang F, Hu L, Zhou J, Hu J, Zhao K (2015) A semantics-based approach to multi-source heterogeneous information fusion in the internet of things. Soft Comput 1–9

  • Wei W, Barnaghi P (2009) Semantic annotation and reasoning for sensor data. In: European conference on smart sensing and context, Springer, pp 66–76

  • Zhang J (2010) Multi-source remote sensing data fusion: status and trends. Int J Image Data Fusion 1:5–24. https://doi.org/10.1080/19479830903561035

    Article  Google Scholar 

  • Zhou J, Hu L, Wang F, Lu H, Zhao K (2013) An efficient multidimensional fusion algorithm for IoT data based on partitioning . Tsinghua Sci Technol 18:369–378

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Ahmed Al-Baltah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

@prefix map: <#> .

@prefix db: <http://www.localhost:2020/resource/> .

@prefix : <http://www.localhost:2020/resource/> .

@prefix vocab: <vocab/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1# >.

@prefix jdbc: <http://www.d2rq.org/terms/jdbc/> .

@prefix ssn: <http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#>.

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>.

@prefix iot-lite: <http://www.iot.ee.surrey.ac.uk/fiware/ontologies/iot-lite#>.

@prefix qu: <http://www.purl.org/NET/ssnx/qu/qu#>.

@prefix unit: <http://www.purl.oclc.org/NET/ssnx/qu/unit#>.

@prefix time: <http://www.w3.org/2006/time#>.

@prefix m3-lite: <http://www.purl.org/iot/vocab/m3-lite#>.

map:database a d2rq:Database;

d2rq:jdbcDriver “com.mysql.jdbc.Driver”;

d2rq:jdbcDSN “jdbc:mysql://localhost/heterogeneous_sensors”;

d2rq:username “admin”;

d2rq:password “admin”;

jdbc:autoReconnect “true”;

jdbc:zeroDateTimeBehavior “convertToNull”;

.

# Table node_location.

map:node_location a d2rq:ClassMap;

d2rq:dataStorage map:database;

d2rq:uriPattern “node_location/@@node_location.location_name|urlify@@”;

d2rq:class geo:location;

d2rq:classDefinitionLabel “node_location”;

.

map:node_location_latitude a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:node_location;

d2rq:property geo:lat;

d2rq:propertyDefinitionLabel “node location latitude”;

d2rq:column “node_location.latitude”;

d2rq:datatype xsd:double;

.

map:node_location_longitude a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:node_location;

d2rq:property geo:long;

d2rq:propertyDefinitionLabel “node_location longitude”;

d2rq:column “node_location.longitude”;

d2rq:datatype xsd:double;

.

# Table sensor_node.

map:sensor_node a d2rq:ClassMap;

d2rq:dataStorage map:database;

d2rq:uriPattern “SensorNodes/@@sensor_node.Sens_Nod_ID|urlify@@”;

d2rq:class ssn:Device;

d2rq:classDefinitionLabel “sensor_node”;

.

map:sensor_node_location_name__ref a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:sensor_node;

d2rq:property ssn:onPlatform;

d2rq:refersToClassMap map:node_location;

d2rq:join “sensor_node.location_name = > node_location.location_name”;

.

# Table sensors.

map:sensors a d2rq:ClassMap;

d2rq:dataStorage map:database;

d2rq:uriPattern “http://localhost:2020/resource/Sensors/urn:@@sensors.Sensor_Name|urlify@@:uuid:@@sensors.Sensor_uuid|urlify@@”;

d2rq:class ssn:Sensor;

d2rq:class ssn:SensingDevice;

.

map:sensors_Sens_Nod_ID__ref a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:sensors;

d2rq:property iot-lite:isSubSystemof;

d2rq:refersToClassMap map:sensor_node;

d2rq:join “sensors.Sens_Nod_ID = > sensor_node.Sens_Nod_ID”;

.

map:sensors_property_name__ref a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:sensors;

d2rq:property iot-lite:hasQuantityKind;

d2rq:property ssn:observedProperty;

d2rq:refersToClassMap map:property;

d2rq:join “sensors.property_name = > property.property_name”;

.

map:sensors_unit_name__ref a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:sensors;

d2rq:property iot-lite:hasUnit;

d2rq:refersToClassMap map:property_unit;

d2rq:join “sensors.unit_name = > property_unit.unit_name”;

.

# Table measurements_data.

map:measurement_data a d2rq:ClassMap;

d2rq:dataStorage map:database;

d2rq:uriPattern “Measurments/Measurment@@measurement_data.Measu_ID@@”;

d2rq:class ssn:Observation;

.

map:measurement_data_TimeStamp a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:measurement_data;

d2rq:property ssn:observationSamplingTime;

d2rq:column “measurement_data.TimeStamp”;

d2rq:datatype xsd:dateTime;

.

map:measurement_data_Data_Value a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:measurement_data;

d2rq:property ssn:hasValue;

d2rq:column “measurement_data.Data_Value”;

d2rq:datatype xsd:double;

.

map:measurement_data_Sens_ID__ref a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:measurement_data;

d2rq:property ssn:observedBy;

d2rq:refersToClassMap map:sensors;

d2rq:join “measurement_data.Sens_ID = > sensors.Sens_ID”;

.

map:measurement_data_property a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:measurement_data;

d2rq:property ssn:observedProperty;

d2rq:uriPattern “http://purl.org/iot/vocab/m3-lite#@@property.property|urlencode@@”;

d2rq:join “measurement_data.Sens_ID = > sensors.Sens_ID”;

d2rq:join “sensors.property_name = > property.property_name”;

.

map:measurement_data_unit a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:measurement_data;

d2rq:property iot-lite:hasUnit;

d2rq:uriPattern “http://purl.org/iot/vocab/m3-lite#@@property.property|urlencode@@”;

d2rq:join “measurement_data.Sens_ID = > sensors.Sens_ID”;

d2rq:join “sensors.unit_name = > property_unit.unit_name”;

.

# Table property.

map:property a d2rq:ClassMap;

d2rq:dataStorage map:database;

d2rq:uriPattern “http://purl.org/iot/vocab/m3-lite#@@property.property|urlencode@@”;

d2rq:class qu:QuantityKind;

.

# Table property_unit.

map:property_unit a d2rq:ClassMap;

d2rq:dataStorage map:database;

d2rq:uriPattern “http://purl.org/iot/vocab/m3-lite#@@property.property|urlencode@@”;

d2rq:class qu:Unit;

d2rq:classDefinitionLabel “property_unit”;

.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Baltah, I.A., Ghani, A.A.A., Al-Gomaei, G.M. et al. A scalable semantic data fusion framework for heterogeneous sensors data. J Ambient Intell Human Comput 14, 5047–5066 (2023). https://doi.org/10.1007/s12652-020-02527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02527-5

Keywords

Navigation