Skip to main content
Log in

Predicting the energy consumption in software defined wireless sensor networks: a probabilistic Markov model approach

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The smart world is connecting all universe more than ever thought possible, benefiting from the significant advances of the Internet of Things (IoT) applications using wireless sensor networks (WSN) as the core technology. A challenging issue in the IoT paradigm is the heterogeneity in different parts of the network. The network developers need to use resources belonging to different platforms for their applications, and the software defined network (SDN) approach is a mainly considered solution. In this paper, a software defined wireless sensor network (SDWSN) with an energy predictor model (SDWSN-EPM) based on the Markov probabilistic model is proposed to reduce the energy consumption and the network latency. The energy consumption rate (ECR) of the sensor nodes is modeled using the Markov model and the states of the sensor nodes. The ECR is used by the SDN controller to predict the residual energy level of the nodes and consequently, the energy consumption of the network. The cumulative distribution functions (CDF) of the delay, power consumption, and the network lifetime in both SDWSN and SDWSN-EPM schemes are compared. The results confirm that the SDWSN-EPM model significantly improves the performance of the sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

Download references

Acknowledgements

This work was supported by Shahid Chamran University of Ahvaz under Grant Number 98/3/05/14909.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Seifi Kavian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimifar, A., Seifi Kavian, Y., Kaabi, H. et al. Predicting the energy consumption in software defined wireless sensor networks: a probabilistic Markov model approach. J Ambient Intell Human Comput 12, 9053–9066 (2021). https://doi.org/10.1007/s12652-020-02599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02599-3

Keywords