Skip to main content
Log in

Moving target extraction and background reconstruction algorithm

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

It is difficult for the computer to distinguish the target from the background due to the long-time static of the target after moving. A new moving target detection and background reconstruction algorithm is proposed and is applied into the RGB video for the first time. Firstly, the proposed algorithm builds a model from the time dimension to extract the changed region. Then, it combines with the space dimension information to completely extract the moving target. The spatiotemporal correlation model is established to realize the construction of pure background. The experimental results show that the proposed algorithm can effectively reconstruct the background and the recognition rate of moving target is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6

Similar content being viewed by others

References

  • Appathurai A, Sundarasekar R, Raja C, Alex E, Palagan C, Nithya A (2020) An efficient optimal neural network-based moving vehicle detection in traffic video surveillance system. Circuits Syst Signal Process 39(2):734–756. https://doi.org/10.1007/s00034-019-01224-9

    Article  Google Scholar 

  • Campbell J, Sukthankar R, Nourbakhsh I. (2004, September). Techniques for evaluating optical flow for visual odometry in extreme terrain. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS)(IEEE Cat. No. 04CH37566) (Vol. 4, pp 3704–3711). IEEE. https://doi.org/10.1109/IROS.2004.1389991

  • Cao L, Jiang Y. (2012). An effective background reconstruction method for video objects detection. In: 2012 third international conference on networking and distributed computing (pp 161–165). IEEE. https://doi.org/10.1109/ICNDC.2012.46

  • Carmona E, Martínez-Cantos J, Mira J (2008) A new video segmentation method of moving objects based on blob-level knowledge. Pattern Recogn Lett 29(3):272–285. https://doi.org/10.1016/j.patrec.2007.10.007

    Article  Google Scholar 

  • Chen Y, Liu X, Huang Q (2008) Real-time detection of rapid moving infrared target on variation background. Infrared Phys Technol 51(3):146–151. https://doi.org/10.1016/j.infrared.2007.09.005

    Article  Google Scholar 

  • Chen D, Zhang C, Wang S, Tian T. (2011, July). Dynamic background reconstruction in traffic surveillance systems. In: 2011 International symposium on computer science and society (pp. 248–250). IEEE. https://doi.org/10.1109/ISCCS.2011.74

  • Chen C, Li H, Wei Y, Xia T, Tang Y (2013) A local contrast method for small infrared target detection. IEEE Trans Geosci Remote Sens 52(1):574–581. https://doi.org/10.1109/TGRS.2013.2242477

    Article  Google Scholar 

  • Dai H, Lei D, Dan L, San Z (2019) Moving-object tracking algorithm based on PCA-SIFT and optimization for underground coal mines. IEEE Access 7:35556–35563. https://doi.org/10.1109/ACCESS.2019.2899362

    Article  Google Scholar 

  • Ding X, He L, Carin L (2011) Bayesian robust principal component analysis. IEEE Trans Image Process 20(12):3419–3430. https://doi.org/10.1109/TIP.2011.2156801

    Article  MathSciNet  MATH  Google Scholar 

  • Dong E, Han B, Jian H, Tong J, Wang Z. (2019). Moving target detection based on improved Gaussian mixture model considering camera motion. Multimedia Tools Appl 1–16. https://doi.org/10.1007/s11042-019-08534-9

  • Erichson N, Donovan C (2016) Randomized low-rank dynamic mode decomposition for motion detection. Comput Vis Image Underst 146:40–50. https://doi.org/10.1016/j.cviu.2016.02.005

    Article  Google Scholar 

  • Gao C, Meng D, Yang Y, Wang Y, Zhou X, Hauptmann A (2013) Infrared patch-image model for small target detection in a single image. IEEE Trans Image Process 22(12):4996–5009. https://doi.org/10.1109/TIP.2013.2281420

    Article  MathSciNet  MATH  Google Scholar 

  • Guang-li C, Wei Z. (2010). Video object segmentation algorithm based on background reconstruction. In: 2010 international conference on computer design and applications. http://dx.doi.org/10.1109%2FICCDA.2010.5540825

  • Hall E, Willett R. (2013, September). Foreground and background reconstruction in Poisson video. In: 2013 IEEE international conference on image processing (pp 2484–2488). IEEE. https://doi.org/10.1109/ICIP.2013.6738512

  • Hu Y (2020) Image segmentation based on velocity feature vector for moving target extraction. IEEE Sens J. https://doi.org/10.1109/JSEN.2020.2974314

    Article  Google Scholar 

  • Huang W, Kang Y, Zheng S. (2017, October). An improved frame difference method for moving target detection. In: 2017 Chinese automation congress (CAC) (pp. 1537–1541). IEEE. https://doi.org/10.1109/CAC.2017.8243011

  • Ivanov Y, Peleshko D, Makoveychuk O, Izonin I, Malets I, Lotoshunska N, Batyuk D. (2015, February). Adaptive moving object segmentation algorithms in cluttered environments. In: The experience of designing and application of CAD systems in microelectronics (pp 97–99). IEEE. https://doi.org/10.1109/CADSM.2015.7230806

  • Kalirajan K, Sudha M (2015) Moving object detection for video surveillance. Sci World J. https://doi.org/10.1155/2015/907469

    Article  Google Scholar 

  • Kang W, Lai W, Meng X (2009) An adaptive background reconstruction algorithm based on inertial filtering. Optoelectron Lett 5(6):468–471. https://doi.org/10.1007/s11801-009-9075-x

    Article  Google Scholar 

  • Li E, Bo Z, Chen M, Gong W, Han S (2014) Ghost imaging of a moving target with an unknown constant speed. Appl Phys Lett 104(25):251120. https://doi.org/10.1063/1.4885764

    Article  Google Scholar 

  • Liu X, Xue F. (2018). Moving target detection based on adaptive edge extraction algorithm. In: 2018 13th IEEE conference on industrial electronics and applications (ICIEA) (pp 1206–1211). IEEE. https://doi.org/10.1109/ICIEA.2018.8397893

  • Liu P, Meng M, Liu P (2005) Moving object segmentation and detection for monocular robot based on active contour model. Electron Lett 41(24):1320–1322. https://doi.org/10.1049/el:20053620

    Article  Google Scholar 

  • Liu P, Meng M, Liu P, Tong F, Wang X. (2006, May). Optical flow and active contour for moving object segmentation and detection in monocular robot. In: Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006. (pp. 4075–4080). IEEE. https://doi.org/10.1109/ROBOT.2006.1642328

  • Liu H, Chen W. (2009, October). An effective background reconstruction method for complicated traffic crossroads. In: 2009 IEEE international conference on systems, man and cybernetics (pp 1376–1381). IEEE. https://doi.org/10.1109/ICSMC.2009.5346273

  • Lou L, Liang S, Zhang Y. (2019) Application research of moving target detection based on optical flow algorithms. In: Journal of Physics: Conference Series (Vol. 1237, No. 2, p 022073). IOP Publishing. https://doi.org/10.1088/1742-6596/1237/2/022073

  • Petrov V, Andreev S, Gerla M, Koucheryavy Y (2018) Breaking the limits in urban video monitoring: massive crowd sourced surveillance over vehicles. IEEE Wirel Commun 25(5):104–112. https://doi.org/10.1109/MWC.2018.1700415

    Article  Google Scholar 

  • Qiu S, Luo J, Yang S, Zhang M, Zhang W (2019) A moving target extraction algorithm based on the fusion of infrared and visible images. Infrared Phys Technol 98:285–291. https://doi.org/10.1016/j.infrared.2019.03.022

    Article  Google Scholar 

  • Qiu S, Tang Y, Du Y, Yang S (2019) The infrared moving target extraction and fast video reconstruction algorithm. Infrared Phys Technol 97:85–92. https://doi.org/10.1016/j.infrared.2018.11.025

    Article  Google Scholar 

  • Qiu S, Cheng K, Cui L, Zhou D, Guo Q. (2020). A moving vehicle tracking algorithm based on deep learning. Journal of Ambient Intelligence and Humanized Computing, 1–7. https://doi.org/10.1007/s12652-020-02352-w

  • Stauffer C, Grimson W. (1999, June). Adaptive background mixture models for real-time tracking. In: Proceedings. 1999 IEEE computer society conference on computer vision and pattern recognition (Cat. No PR00149) (Vol. 2, pp 246–252). IEEE. https://doi.org/10.1109/CVPR.1999.784637

  • Su F, Fang G, Kwok N. (2012, October). Shadow removal using background reconstruction. In: 2012 5th international congress on image and signal processing (pp. 154–158). IEEE. https://doi.org/10.1109/CISP.2012.6469788

  • Tomás R, Casado A. (2009, June). Knowledge and event-based system for video-surveillance tasks. In International Work-Conference on the Interplay Between Natural and Artificial Computation (pp. 386–394). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02264-7_40

  • Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 29(6):929–944. https://doi.org/10.1109/TPAMI.2007.1046

    Article  Google Scholar 

  • Van E, Schutte K, Van V (2010) Multiframe super-resolution reconstruction of small moving objects. IEEE Trans Image Process 19(11):2901–2912. https://doi.org/10.1109/TIP.2010.2068210

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Gao J, Yu L, Hu Y, Wang Z. (2017, August). Combined improved Frequency-Tuned with GMM algorithm for moving target detection. In: 2017 IEEE international conference on mechatronics and automation (ICMA) (pp 1848–1852). IEEE. https://doi.org/10.1109/ICMA.2017.8016099

  • Wang H, Peng J, Zheng X, Yue S (2019) A robust visual system for small target motion detection against cluttered moving backgrounds. IEEE Trans Neural Netw Learn Syst 31(3):839–853. https://doi.org/10.1109/TNNLS.2019.2910418

    Article  Google Scholar 

  • Weng S, Kuo C, Tu S (2006) Video object tracking using adaptive Kalman filter. J Vis Commun Image Represent 17(6):1190–1208. https://doi.org/10.1016/j.jvcir.2006.03.004

    Article  Google Scholar 

  • Xia H, Song S, He L (2016) A modified Gaussian mixture background model via spatiotemporal distribution with shadow detection. Signal Image Video Process 10(2):343–350. https://doi.org/10.1007/s11760-014-0747-z

    Article  Google Scholar 

  • Yang T, Li S, Pan Q, Li J. (2004, October). Real-time and accurate segmentation of moving objects in dynamic scene. In: Proceedings of the ACM 2nd international workshop on Video surveillance & sensor networks (pp 136–143). https://doi.org/10.1145/1026799.1026822

  • Zhan C, Duan X, Xu S, Song Z, Luo M. (2007). An improved moving object detection algorithm based on frame difference and edge detection. In: Fourth international conference on image and graphics (ICIG 2007) (pp. 519–523). IEEE. https://doi.org/10.1109/ICIG.2007.153

  • Zhang F, Li C, Shi L (2005) Detecting and tracking dim moving point target in IR image sequence. Infrared Phys Technol 46(4):323–328. https://doi.org/10.1016/j.infrared.2004.06.001

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Open Project Program of the State Key Lab of CAD&CG (Grant No. A2026), Zhejiang University. National Natural Science Foundation of China (Grant No. 61873145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, S., Li, X. Moving target extraction and background reconstruction algorithm. J Ambient Intell Human Comput 14, 6007–6015 (2023). https://doi.org/10.1007/s12652-020-02619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02619-2

Keywords

Navigation