Skip to main content
Log in

Computing stationary distributions of the D-MAP/D-MSP\(^{(a,b) }/1\) queueing system

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The present study investigates a single-server batch service queueing model with arrival process as discrete-time Markovian arrival process and service process as discrete-time Markovian service process. The server serves the customers in batches followed by the general bulk-service rule. We first determine the random epoch probabilities using the matrix-geometric method, where the rate matrix \({\mathbf{R}}\) is determined by an efficient approach based on the eigenvalues and the corresponding eigenvectors of the associated characteristic equation. Next we obtain the explicit closed-form expressions for the pre-arrival, intermediate, outside observer’s and post-departure epoch probabilities by developing the relations among them in equilibrium state. Further, we provide an analytically simple approach to carry out the waiting-time distribution in the queue measured in slots as well as the distribution of the size of a service batch of an arriving customer. We also demonstrate a cost function to evaluate the optimum value of the minimum service batch size and the corresponding expected cost of the system. Finally, an adequate variety of numerical experiments are performed for validation purpose of our analytical results and they are conferred in the form of tables and graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abolnikov L, Dukhovny A (2003) Optimization in HIV screening problems. J Appl Math Stoch Anal 16:361–374

    Article  MathSciNet  Google Scholar 

  • Alfa AS (2016) Applied discrete-time queues, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Alfa AS, Chakravarthy S (1994) A discrete queue with the Markovian arrival process and phase type primary and secondary services. Stoch Models 10:437–451

    Article  MathSciNet  Google Scholar 

  • Alfa AS, Liu B, He QM (2003) Discrete-time analysis of \(MAP/PH/1\) multiclass general preemptive priority queue. Naval Res Logist 50(6):662–682

    Article  MathSciNet  Google Scholar 

  • Alfa AS, Xue J, Ye Q (2000) Perturbation theory for the asymptotic decay rates in the queues with Markovian arrival process and/or Markovian service process. Queueing Syst 36:287–301

    Article  MathSciNet  Google Scholar 

  • Avram F, Gòmez-Corral A (2006) On bulk-service \(MAP/PH^{(L, N)}/1/N\) G-queues with repeated attempts. Ann Oper Res 141:109–137

    Article  MathSciNet  Google Scholar 

  • Banerjee A, Gupta UC, Chakravarthy SR (2015) Analysis of a finite-buffer bulk-service queue under Markovian arrival process with batch-size-dependent service. Comput Oper Res 60:138–149

    Article  MathSciNet  Google Scholar 

  • Banik AD (2015) Single server queues with a batch Markovian arrival process and bulk renewal or non-renewal Service. J Syst Sci Syst Eng 24(3):337–363

    Article  Google Scholar 

  • Bank B, Samanta SK (2020) Analytical and computational studies of the \(BMAP/G^{(a,Y)}/1\) queue. Commun Stat Theory Methods. https://doi.org/10.1080/03610926.2019.1708941

  • Bar-Lev SK, Blanc H, Boxma O, Janssen G, Perry D (2013) Tandem queues with impatient customers for blood screening procedures. Methodol Comput Appl Probab 15(2):423–451

    Article  MathSciNet  Google Scholar 

  • Bhaskar V, Lallement P (2010) Modeling a supply chain using a network of queues. Appl Math Model 34:2074–2088

    Article  MathSciNet  Google Scholar 

  • Chaudhry ML, Banik AD, Pacheco A, Ghosh S (2016) A simple analysis of system characteristics in the batch service queue with infinite-buffer and Markovian service process using the roots method: \(GI/C\)-\(MSP^{(a, b)}/1/\infty\). RAIRO Oper Res 50:519–551

    Article  MathSciNet  Google Scholar 

  • Chaudhry ML, Templeton JGC (1983) A first course in bulk queues. Wiley, New York

    MATH  Google Scholar 

  • D’Arienzo MP, Dudin AN, Dudin SA, Manzo R (2020) Analysis of a retrial queue with group service of impatient customers. J Ambient Intell Humaniz Comput 11(6):2591–2599

    Article  Google Scholar 

  • Gail HR, Hantler SL, Taylor BA (1996) Spectral analysis of \(M/G/1\) and \(G/M/1\) type Markov chains. Adv Appl Probab 28(1):114–165

    Article  MathSciNet  Google Scholar 

  • Grassmann WK, Drekic S (2008) Multiple eigenvalues in spectral analysis for solving QBD processes. Methodol Comput Appl Probab 10(1):73–83

    Article  MathSciNet  Google Scholar 

  • Gupta UC, Laxmi PV (2001) Analysis of the \(MAP/G(a, b)/1/N\) queue. Queueing Syst 38:109–124

    Article  MathSciNet  Google Scholar 

  • Gupta UC, Samanata SK, Sharma RK, Chaudhry ML (2007) Discrete-time single-server finite-buffer queues under discrete Markovian arrival process with vacations. Perform Eval 64:1–19

    Article  Google Scholar 

  • Gyasi-Agyei Y (2001) Modelling diurnal cycles in point rainfall properties. Hydrol Process 15(4):595–608

    Article  Google Scholar 

  • Horváth A, Horváth G, Telek M (2010) A joint moments based analysis of networks of \(MAP/MAP/1\) queues. Perform Eval 67:759–778

    Article  Google Scholar 

  • Horváth G, Van Houdt B, Telek M (2014) Commuting matrices in the queue length and sojourn time analysis of \(MAP/MAP/1\) queues. In: The eighth International Conference on Matrix-Analytic Methods in Stochastic Models (MAM8), Calicut, India. https://pdfs.semanticscholar.org/8c8d/14e9ac701fbc3f0a87b72be22ddc5ba4856a.pdf

  • Kawase Y, Kasahara S (2018) A batch-service queueing system with general input and its application to analysis of mining process for bitcoin blockchain. In: 2018 IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatic, pp 1440–1447

  • Koo PH, Moon DH (2013) A review on control strategies of batch processing machines in semiconductor manufacturing. In: 7th IFAC Conference on manufacturing modelling, management, and control international federation of automatic control, Saint Petersburg, Russia, IFAC Proceedings, vol 46, no 9, pp 1690–1695

  • McDonnell J, Goverde AJ, Rutten FFH, Vermeiden JPW (2002) Multivariate Markov chain analysis of the probability of pregnancy in infertile couples undergoing assisted reproduction. Hum Reprod 17(1):103–106

    Article  Google Scholar 

  • Medhi J (1975) Waiting time distribution in a Poisson queue with a general bulk service rule. Manage Sci 21(7):777–782

    Article  Google Scholar 

  • Medhi J (1991) Stochastic models in queueing theory. Academic Press, Boston

    MATH  Google Scholar 

  • Mitrani I, Chakka R (1995) Spectral expansion solution for a class of Markov models: application and comparison with the matrix-geometric method. Perform Eval 23:241–260

    Article  Google Scholar 

  • Mullubhatla R, Pattipati KR (2000) Discrete-time Markov reward models of automated manufacturing systems with multiple part types and random rewards. IEEE Trans Robot Autom 16(5):553–566

    Article  Google Scholar 

  • Neuts MF (1967) A general class of bulk queues with Poisson input. Ann Math Stat 38(3):759–770

    Article  MathSciNet  Google Scholar 

  • Neuts MF (1981) Matrix-geometric solutions in stochastic models. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Neuts MF (1989) Structured stochastic matrices of \(M/G/1\) type and their applications. CRC Press, Marcel Dekker, New York

    MATH  Google Scholar 

  • Nishimura S, Tominaga H, Shigeta T (2006) A computational method for the boundary vector of a \(BMAP/G/1\) queue. J Oper Res Soc Jpn 49(2):83–97

    MathSciNet  MATH  Google Scholar 

  • Norberg T, Rosén L, Baran A, Baran S (2002) On modeling discrete geological structures as Markov random fields. Math Geol 34(1):63–77

    Article  MathSciNet  Google Scholar 

  • Ozawa T (2004) Analysis of queues with Markovian service processes. Stoch Models 20(4):391–413

    Article  MathSciNet  Google Scholar 

  • Pradhan S, Gupta UC (2019) Analysis of an infinite-buffer batch-size-dependent service queue with Markovian arrival process. Ann Oper Res 277:161–196

    Article  MathSciNet  Google Scholar 

  • Samanta SK, Bank B (2020) Extended analysis and computationally efficient results for the \(GI/M^{a,b}/1\) queueing system. Commun Stat Theory Methods. https://doi.org/10.1080/03610926.2020.1801739

  • Samanta SK, Chaudhry ML, Pacheco A (2016) Analysis of \(BMAP/MSP/1\) queue. Methodol Comput Appl Probab 18:419–440

    Article  MathSciNet  Google Scholar 

  • Samanta SK, Zhang ZG (2012) Stationary analysis of a discrete-time \(GI/D\)-\(MSP/1\) queue with multiple vacations. Appl Math Model 36:5964–5975

    Article  MathSciNet  Google Scholar 

  • Santhi K, Saravanan R (2017) Performance analysis of cloud computing bulk service using queueing models. Int J Appl Eng Res 12(17):6487–6492

    Google Scholar 

  • Schwarz JA, Epp M (2016) Performance evaluation of a transportation-type bulk queue with generally distributed inter-arrival times. Int J Prod Res 54(20):6251–6264

    Article  Google Scholar 

  • Sim SH, Templeton JGC (1985) Steady state results for the \(M/M^{(a, b)}/c\) batch-service system. Eur J Oper Res 21:260–267

    Article  MathSciNet  Google Scholar 

  • Singh G, Gupta UC, Chaudhry ML (2013) Computational analysis of bulk service queue with Markovian arrival process: \(MAP/R^{(a, b)}/1\) queue. Opsearch 50:582–603

    Article  MathSciNet  Google Scholar 

  • Wang YC, Chou JH, Wang SY (2011) Loss pattern of \(DBMAP/DMSP/1/K\) queue and its application in wireless local communications. Appl Math Model 35:1782–1797

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank anonymous referees for careful reading of the paper leading to a number of improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Kumar Samanta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Commuting matrices

Appendix: Commuting matrices

Horváth et al. (2014) proved that \({\mathbf{R}}\) and \(({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_0)+{\mathbf{R}}({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_1)\) commute for continuous-time MAP/MSP/1 queueing model. Now, we extend the proof of the commutativity for our proposed bulk-service discrete-time queueing model, i.e., \({\mathbf{R}}\) and \(({\mathbf{I}}_{m_1}\otimes \mathbf{L}_0)+{\mathbf{R}}^b({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_1)\) commute. According to the spectral decomposition approach conferred in Horváth et al. (2014), we establish the commutativity for our queueing model.

Assumption 1

We assume that the matrices \({\mathbf{D}}_1+\alpha _i{\mathbf{D}}_0\) and \(\mathbf{L}_0+\alpha _i^b{\mathbf{L}}_1\) can be diagonalized for \(i=1,2,\ldots , m\).

Lemma 1

If \(\mathbf{U}\) and \(\mathbf{V}\) be two square matrices of order \(m_1\) and \(m_2\), respectively, such that they are diagonalizable then \(\mathbf{U}\otimes \mathbf{V}\) is also diagonalizable. Moreover, if \(\mathbf{u}_i\) is the left eigenvector of \(\mathbf{U}\) corresponding to the eigenvalue \(\theta _i\) for \(i=1,2,\ldots ,m_1\) and \(\mathbf{v}_j\) is the left eigenvector of \(\mathbf{V}\) corresponding to the eigenvalue \(\delta _j\) for \(j=1,2,\ldots ,m_2\), then \(\mathbf{U}\otimes \mathbf{V}\) has left eigenvector \(\mathbf{u}_i\otimes \mathbf{v}_j\) corresponding to the eigenvalue \(\theta _i\delta _j\).

Lemma 2

If \({{\varvec{\eta }}}_i\) be the left eigenvector of the matrix \({\mathbf{R}}\) corresponding to the eigenvalue \(\alpha _i\) for \(i=1,2,\ldots , m\), then \({{\varvec{\eta }}}_i\) is also left eigenvector of \(({\mathbf{I}}_{m_1}\otimes ({\mathbf{L}}_0+\alpha _i^b\mathbf{L}_1))\).

Proof

Pre-multiplying (6) by \({\varvec{\eta }}_i\) and using \({{\varvec{\eta }}}_i\mathbf{R}=\alpha _i{{\varvec{\eta }}}_i\), for \(i=1,2,\ldots , m\), we have

$$\begin{aligned} \alpha _i{{\varvec{\eta }}}_i= & {} {\varvec{\eta }}_i\left[ ({\mathbf{D}}_1 \otimes \mathbf{L}_0)+\alpha _i^{b}({\mathbf{D}}_1 \otimes \mathbf{L}_1)\right] +\alpha _i{\varvec{\eta }}_i\left[ ({\mathbf{D}}_0 \otimes {\mathbf{L}}_0)\right. \nonumber \\&\left. +{\alpha _i}^{b}({\mathbf{D}}_0 \otimes {\mathbf{L}}_1)\right] \nonumber \\= & {} {\varvec{\eta }}_i\left[ ({\mathbf{D}}_1+\alpha _i{\mathbf{D}}_0) \otimes (\mathbf{L}_0+\alpha _i^b{\mathbf{L}}_1)\right] . \end{aligned}$$
(17)

This implies that \({\varvec{\eta }}_i\) is the left eigenvector of \(\left[ (\mathbf{D}_1+\alpha _i{\mathbf{D}}_0) \otimes ({\mathbf{L}}_0+\alpha _i^b\mathbf{L}_1)\right]\) corresponding to the eigenvalue \(\alpha _i\). According to our above Assumption 1 and Lemma 1, if \({{\varvec{\upsilon }}}_{i,j}\) is the left eigenvector of \(({\mathbf{D}}_1+\alpha _i\mathbf{D}_0)\) corresponding to the eigenvalue \(\xi _{i,j}\), for \(j=1,2,\ldots , m_1\), and \({{\varvec{\phi }}}_{i,k}\) is the left eigenvector of \(({\mathbf{L}}_0+\alpha _i^b{\mathbf{L}}_1)\) corresponding to the eigenvalue \(\gamma _{i,k}\), for \(k=1,2,\ldots , m_2\) then we have \({\varvec{\eta }}_i={\varvec{\upsilon }}_{i,p_i}\otimes {\varvec{\phi }}_{i,r_i}\) and \(\alpha _i=\xi _{i,p_i}\gamma _{i,r_i}\), for some \(p_i\in \{1,2,\ldots , m_1\}\) and \(r_i\in \{1,2,\ldots ,m_2\}\). Therefore, we have

$$\begin{aligned}&{\varvec{\eta }}_i ({\mathbf{I}}_{m_1}\otimes ({\mathbf{L}}_0+\alpha _i^b\mathbf{L}_1))\\&\quad =({\varvec{\upsilon }}_{i,p_i}\otimes {\varvec{\phi }}_{i,r_i}) ({\mathbf{I}}_{m_1}\otimes ({\mathbf{L}}_0+\alpha _i^b{\mathbf{L}}_1))\\&\quad ={\varvec{\upsilon }}_{i,p_i}\otimes {\varvec{\phi }}_{i,r_i}({\mathbf{L}}_0+\alpha _i^b{\mathbf{L}}_1)\\&\quad ={\varvec{\upsilon }}_{i,p_i}\otimes \gamma _{i,r_i}{\varvec{\phi }}_{i,r_i}\\&\quad =\gamma _{i,r_i}{\varvec{\eta }}_i. \end{aligned}$$

Hence, it is proved that \({{\varvec{\eta }}}_i\) is the left eigenvector of \(({\mathbf{I}}_{m_1}\otimes ({\mathbf{L}}_0+\alpha _i^b{\mathbf{L}}_1))\). \(\square\)

Lemma 3

If \({{\varvec{\eta }}}_i\) be the left eigenvector of the matrix \({\mathbf{R}}\) corresponding to the eigenvalue \(\alpha _i\) for \(i=1,2,\ldots , m\), then \({{\varvec{\eta }}}_i\) is also the left eigenvector of \(({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_0)+{\mathbf{R}}^b(\mathbf{I}_{m_1}\otimes {\mathbf{L}}_1)\) corresponding to the eigenvalue \(\gamma _{i,r_i}.\)

Proof

Using Lemma 2, we can write

$$\begin{aligned}&{\varvec{\eta }}_i\left[ ({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_0)+{\mathbf{R}}^b(\mathbf{I}_{m_1}\otimes {\mathbf{L}}_1)\right] \\&\quad ={\varvec{\eta }}_i\left[ (\mathbf{I}_{m_1}\otimes {\mathbf{L}}_0)+\alpha _i^b({\mathbf{I}}_{m_1}\otimes \mathbf{L}_1)\right] \\&\quad ={\varvec{\eta }}_i ({\mathbf{I}}_{m_1}\otimes (\mathbf{L}_0+\alpha _i^b{\mathbf{L}}_1))\\&\quad =\gamma _{i,r_i}{\varvec{\eta }}_i. \end{aligned}$$

\(\square\)

Theorem

Under Assumption 1, the matrices \({\mathbf{R}}\) and \(({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_0)+{\mathbf{R}}^b(\mathbf{I}_{m_1}\otimes {\mathbf{L}}_1)\) commute.

Proof

From Lemma 3, we can say that \({\mathbf{R}}\) and \(({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_0)+{\mathbf{R}}^b({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_1)\) are simultaneously diagonalizable. Therefore, there exists a matrix \({\mathbf{Y}}\) such that

$$\begin{aligned} {\mathbf{R}}= & {} \Big [{\mathbf{Y}}{\varvec{\Delta }}{\mathbf{Y}}^{-1}\Big ]^T ~\text {and}~({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_0)+{\mathbf{R}}^b(\mathbf{I}_{m_1}\otimes {\mathbf{L}}_1)\nonumber \\= & {} \Big [{\mathbf{Y}}{\widehat{\varvec{\Delta }}}\mathbf{Y}^{-1}\Big ]^T, \end{aligned}$$
(18)

where

$$\begin{aligned} {\widehat{\varvec{\Delta }}}=\left[ \begin{array}{ccccc} \gamma _{1,r_1}&{} &{} &{} &{} \\ &{} \gamma _{2,r_2}&{} &{} &{} \\ &{} &{} \ddots &{} &{} \\ &{} &{} &{} &{} \gamma _{m,r_m} \end{array} \right] . \end{aligned}$$

Now, using (18), we have

$$\begin{aligned}&{\mathbf{R}}\left[ ({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_0)+{\mathbf{R}}^b(\mathbf{I}_{m_1}\otimes {\mathbf{L}}_1)\right] \\&\quad =({\mathbf{Y}}^T)^{-1}{\varvec{\Delta }}({\mathbf{Y}}^T)({\mathbf{Y}}^T)^{-1}{\widehat{\varvec{\Delta }}}(\mathbf{Y}^T)\\&\quad =({\mathbf{Y}}^T)^{-1}{\varvec{\Delta }}{{\widehat{\varvec{\Delta }}}}(\mathbf{Y}^T)\\&\quad =({\mathbf{Y}}^T)^{-1}{\widehat{\varvec{\Delta }}}{\varvec{\Delta }}(\mathbf{Y}^T)\\&\quad =({\mathbf{Y}}^T)^{-1}{{\widehat{\varvec{\Delta }}}}({\mathbf{Y}}^T)(\mathbf{Y}^T)^{-1}{\varvec{\Delta }}({\mathbf{Y}}^T)\\&\quad =\left[ ({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_0)+ {\mathbf{R}}^b({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_1)\right] \mathbf{R}. \end{aligned}$$

Hence, it is proved that \({\mathbf{R}}\) and \(({\mathbf{I}}_{m_1}\otimes \mathbf{L}_0)+ {\mathbf{R}}^b({\mathbf{I}}_{m_1}\otimes {\mathbf{L}}_1)\) commute each other. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S.K., Das, K. Computing stationary distributions of the D-MAP/D-MSP\(^{(a,b) }/1\) queueing system. J Ambient Intell Human Comput 13, 571–590 (2022). https://doi.org/10.1007/s12652-021-02919-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-02919-1

Keywords

Navigation