Skip to main content
Log in

Similarity measure of the interval-valued fuzzy numbers and its application in risk analysis in paddy cultivation

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Generally, in a risk analysis problems, data are collected from experts in terms of linguistic variables, which are then observed as fuzzy numbers. Eventually, the total risk is calculated, and obtained as fuzzy numbers, using the arithmetic operations of fuzzy numbers. Finally, the risk so obtained has to be expressed in terms of linguistic variables, so that it becomes communicable to the general audience. One such tool in fuzzy mathematics is the similarity measure. In this paper, a new method of determining the similarity between two interval-valued fuzzy numbers has been developed. Generally, various parameters were used in deriving a similarity measure. However, the parameters that describe the shape of an interval-valued fuzzy numbers was never a concern in the earlier studies. Hence, in this study, these parameters are incorporated in the similarity measure. Further, a few reasonable properties are being developed, which will be considered as standard in developing a similarity measure. Finally, a risk analysis problem in paddy cultivation is discussed. Using the proposed similarity measure, the final risk is expressed in terms of a linguistic variable. The final risk so obtained for paddy cultivation, under the assumed scenario, is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamie BA, Balezentis T, Asmild M (2019) Environmental production factors and efficiency of smallholder agricultural households: using non-parametric conditional frontier methods. J Agric Econ 70(2):471–487

    Article  Google Scholar 

  • Aydın T, Enginoğlu S (2020) Interval-valued intuitionistic fuzzy parameterized interval-valued intuitionistic fuzzy soft sets and their application in decision-making. J Ambient Intell Human Comput 1–18. https://doi.org/10.1007/s12652-020-02227-0

  • Basu S (2005) Classical sets and non-classical sets? An overview. Resonance 10(8):38–48

    Article  Google Scholar 

  • Chen SM, Chen JH (2009a) Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different spreads. Expert Syst Appl 36(3, Part 2): 6833–6842

  • Chen SM, Chen JH (2009b) Fuzzy risk analysis based on similarity measures between interval-valued fuzzy numbers and interval-valued fuzzy number arithmetic operators. Expert Syst Appl 36(3, Part 2): 6309–6317

  • Chen SJ, Chen SM (2004) A new similarity measure between interval-valued fuzzy numbers. In: Proceedings of the joint 2nd international conference of soft computing and intelligent systems and 5th international symposium on advanced intelligent systems. Yokohama, Japan

  • Chen SJ (2007) A novel similarity measure for interval-valued fuzzy numbers based on geometric-mean averaging operator. In: Proceedings of the BAI international conference on business and information. Tokyo, Japan

  • Chen SM (1997) Fuzzy system reliability analysis based on vague set theory. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 2: pp. 1650–16552

  • Chen SM (1996) New methods for subjective mental workload assessment and fuzzy risk analysis. Cybern Syst 27(5):449–472

    Article  Google Scholar 

  • Chen SJ (2011) Measure of similarity between interval-valued fuzzy numbers for fuzzy recommendation process based on quadratic-mean operator. Expert Syst Appl 38(3):2386–2394

    Article  Google Scholar 

  • Chen SJ, Chen SM (2003) Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers. IEEE T Fuzzy Syst 11(1):45–56

    Article  Google Scholar 

  • Chen SJ, Chen SM (2007) Fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers. Appl Intell 26(1):1–11

    Article  Google Scholar 

  • Chen SJ, Chen SM (2008) Fuzzy risk analysis based on measures of similarity between interval-valued fuzzy numbers. Comput Math Appl 55(8):1670–1685

    Article  MathSciNet  Google Scholar 

  • Chen SM, Sanguansat K (2011) Analyzing fuzzy risk based on similarity measures between interval-valued fuzzy numbers. Expert Syst Appl 38(7):8612–8621

    Article  Google Scholar 

  • Chen SM, Munif A, Chen GS, Liu HC, Kuo BC (2012) Fuzzy risk analysis based on ranking generalized fuzzy numbers with different left heights and right heights. Expert Syst Appl 39(7):6320–6334

    Article  Google Scholar 

  • Chung K, Yoo H, Choe DE (2020) Ambient context-based modeling for health risk assessment using deep neural network. J Ambient Intell Human Comput 11(4):1387–1395

    Article  Google Scholar 

  • Chutia R (2018) Fuzzy risk analysis using similarity measure of interval-valued fuzzy numbers and its application in poultry farming. Appl Intell 48:3928–3949

    Article  Google Scholar 

  • Chutia R, Gogoi MK (2018a) Fuzzy risk analysis in poultry farming based on a novel similarity measure of fuzzy numbers. Appl Soft Comput 66:60–76

    Article  Google Scholar 

  • Chutia R, Gogoi MK (2018b) Fuzzy risk analysis in poultry farming using a new similarity measure on generalized fuzzy numbers. Comput Ind Eng 115:543–558

    Article  Google Scholar 

  • De UK, Bodosa K (2014) Crop diversification in assam and use of essential modern inputs under changing climatic condition: indication of a retrograded option. Available at SSRN 2472581

  • Gorzalczany MB (1987) A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst 21(1):1–17

    Article  MathSciNet  Google Scholar 

  • Guijun W, Xiaoping L (1998) The applications of interval-valued fuzzy numbers and interval-distribution numbers. Fuzzy Sets Syst 98(3):331–335

    Article  MathSciNet  Google Scholar 

  • Hejazi SR, Doostparast A, Hosseini SM (2011) An improved fuzzy risk analysis based on a new similarity measures of generalized fuzzy numbers. Expert Syst Appl 38(8):9179–9185

    Article  Google Scholar 

  • Hong DH, Lee S (2002) Some algebraic properties and a distance measure for interval-valued fuzzy numbers. Inf Sci 148(1–4):1–10

    Article  MathSciNet  Google Scholar 

  • Hsieh MY, Hsu YC, Lin CT (2018) Risk assessment in new software development projects at the front end: a fuzzy logic approach. J Ambient Intell Human Comput 9(2):295–305

    Article  Google Scholar 

  • Husain M (1982) Crop combinations in India: a study. Concept Publishing Company, New Delhi

    Google Scholar 

  • Kangari R, Riggs LS (1989) Construction risk assessment by linguistics. IEEE Trans Eng Manage 36(2):126–131

    Article  Google Scholar 

  • Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and application, vol. 4. Prentice hall New Jersey, New Jersey, pp 07458

  • Liu J, Martínez L, Wang H, Rodróguez RM, Novozhilov V (2010) Computing with words in risk assessment. Int J Comput Intell Syst 3(4):396–419

    Google Scholar 

  • Patra K, Mondal SK (2015) Fuzzy risk analysis using area and height based similarity measure on generalized trapezoidal fuzzy numbers and its application. Appl Soft Comput 28:276–284

    Article  Google Scholar 

  • Schmucke KJ (1984) Fuzzy Sets: natural language computations, and risk analysis. Computer Science Press, Incorporated, Maryland, pp 20850

  • Sen S, Patra K, Mondal SK (2016) Fuzzy risk analysis in familial breast cancer using a similarity measure of interval-valued fuzzy numbers. Pacific Sci Rev Natl Sci Eng 18(3):203–221

    Article  Google Scholar 

  • Singha M, Wu B, Zhang M (2016) An object-based paddy rice classification using multi-spectral data and crop phenology in Assam, northeast India. Remote Sens 8(6):479

    Article  Google Scholar 

  • Tang TC, Chi LC (2005) Predicting multilateral trade credit risks: comparisons of logit and fuzzy logic models using ROC curve analysis. Expert Syst Appl 28(3):547–556

    Article  Google Scholar 

  • Toledo R, Engler PA, Ahumada VMC (2011) Evaluation of risk factors in agriculture: An application of the analytical hierarchical process (AHP) methodology. Chil J Agric Res 71:114–121

    Article  Google Scholar 

  • Uluçay V (2020) Some concepts on interval-valued refined neutrosophic sets and their applications. J Ambient Intell Human Comput 1–16. https://doi.org/10.1007/s12652-020-02512-y

  • Vasu D, Tiwary P, Chandran P, Singh SK (2020) Soil quality for sustainable agriculture. nutrient dynamics for sustainable crop production. Springer, Singapore, pp 41–66

  • Wang YM, Elhag TMS (2006) Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Syst Appl 31(2):309–319

    Article  Google Scholar 

  • Wei SH, Chen SM (2009a) Fuzzy risk analysis based on interval-valued fuzzy numbers. Expert Syst Appl 36(2, Part 1): 2285–2299

  • Wei SH, Chen SM (2009b) A new approach for fuzzy risk analysis based on similarity measures of generalized fuzzy numbers. Expert Syst Appl 36(1):589–598

    Article  Google Scholar 

  • Williams R, Ahuja L (2003) Scaling and estimating the soil water characteristic using a one-parameter model. Scaling methods in soil physics. CRC Press, Boca Raton, pp 35–48

    Google Scholar 

  • Wu D, Mendel JM (2009) A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf Sci 179(8):1169–1192

    Article  MathSciNet  Google Scholar 

  • Xu Z, Shang S, Qian W, Shu W (2010) A method for fuzzy risk analysis based on the new similarity of trapezoidal fuzzy numbers. Expert Syst Appl 37(3):1920–1927

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf. Control 8(3):338–353

    Article  Google Scholar 

  • Zhang WR, Knowledge Representation Using Linguistic Fuzzy Relations, PhD thesis, USA, 1986

  • Zhao T, Xiao J, Li Y, Deng X (2014) A new approach to similarity and inclusion measures between general type-2 fuzzy sets. Soft Comput 18(4):809–823

    Article  Google Scholar 

  • Zhu LS, Xu RN (2012) Fuzzy risks analysis based on similarity measures of generalized fuzzy numbers. Springer, Heidelberg, Berlin, pp 569–587

  • Zindani D, Maity SR, Bhowmik S (2020) Complex interval-valued intuitionistic fuzzy todim approach and its application to group decision making. J Ambient Intell Human Comput 1–24. https://doi.org/10.1007/s12652-020-02308-0

Download references

Acknowledgements

The authors would like to offer grateful thanks to Krishi Vigyan Kendra, Dhemaji, Assam, India for some fruitful discussions on various risk factors in paddy cultivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rituparna Chutia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Propositions, Theorems and their proofs

Propositions, Theorems and their proofs

Proposition 1

Consider the interval \({\tilde{a}}=[0,1]\), that is, \({\tilde{a}}=(0,0,1,1;1,1)\) and \({\tilde{b}}\) be any arbitrary fuzzy number such that \({\tilde{b}}\subseteq {\tilde{a}}\). If \({\tilde{b}}\) is obtained by horizontal translation within \({\tilde{a}}\), then the geometric distance between \({\tilde{a}}\) and \({\tilde{b}}\) always remain constant.

Proof

Consider \({\tilde{a}}=(0,0,1,1;1,1)\) and \({\tilde{b}}=(b_1,b_2,b_3,b_4;h_1^{{\tilde{a}}},h_2^{{\tilde{a}}})\) such that \({\tilde{b}} \subseteq {\tilde{a}}\). Let \({\tilde{b}}\) is translated horizontally to obtain \({\tilde{b}}_r\), \(r\in I=[0,1]\) such that \({\tilde{b}}_r=(b_1+r,b_2+r,b_3+r,b_4+r;h_1^{{\tilde{a}}},h_2^{{\tilde{a}}})\), then the geometric distance between \({\tilde{a}}\) and \({\tilde{b}}_r\) is \(|0-(b_1+r)|+|0-(b_2+r)|+|1-(b_3+r)|+|1-(b_4+r)|\). Equivalently, it can be written as \(|0-b_1|+r+|0-b_2|+r+|1-b_3|-r+|1-b_4|-r\), which implies that \(|0-b_1|+|0-b_2|+|1-b_3|+|1-b_4|\), which is the geometric distance between \({\tilde{a}}\) and \({\tilde{b}}\). Hence, the proposition. \(\square\)

Proposition 2

Let \({\tilde{a}}=(a_1,a_2,a_3,a_4;h_1^{{\tilde{a}}},h_2^{{\tilde{a}}})\) and \({\tilde{b}}=(b_1,b_2,b_3,b_4;h_1^{{\tilde{b}}},h_2^{{\tilde{b}}})\) are two arbitrary GFNs, then \(\frac{1}{4}\sum \limits _{i=1}^4|a_i-b_i| =1\) if, and only if, either \({\tilde{a}}=(1,1,1,1;h_1^{{\tilde{a}}},h_2^{{\tilde{a}}})\) and \({\tilde{b}}=(0,0,0,0;h_1^{{\tilde{b}}},h_2^{{\tilde{b}}})\) or \({\tilde{a}}=(0,0,0,0;h_1^{{\tilde{a}}},h_2^{{\tilde{a}}})\) and \({\tilde{b}}=(1,1,1,1;h_1^{{\tilde{b}}},h_2^{{\tilde{b}}})\).

Proof

Proof is very trivial. \(\square\)

Proposition 3

If \({\tilde{a}} \cap {\tilde{b}} \ne \Phi\), then \(\frac{1}{4}\sum \limits _{i=1}^4|a_i-b_i|<1\).

Proof

From the proposition 2, the result follows immediately. \(\square\)

Proposition 4

For any two arbitrary fuzzy numbers \({\tilde{a}}\) and \({\tilde{b}}\), \(\frac{1}{2}|\text {ar}({\tilde{a}})-\text {ar}({\tilde{b}})| < 1\).

Proof

As \(0 \le \text {ar}({\tilde{a}}), \text {ar}({\tilde{b}}) \le 1\), therefore \(\frac{1}{2}|\text {ar}({\tilde{a}})-\text {ar}({\tilde{b}})| < 1\). \(\square\)

Proposition 5

Let \(L_i^{{\tilde{a}}}\) and \(L_i^{{\tilde{b}}}\) are edge-lengths of any two non-empty GFNs \({\tilde{a}}\) and \({\tilde{b}}\), then \(\frac{1}{4}\sum \limits _{i=1}^4|L_i^{{\tilde{a}}}-L_i^{{\tilde{b}}}|<1\).

Proof

As \({\tilde{a}}\) and \({\tilde{b}}\) are non-empty GFNs, therefore \(0 < \sum \limits _{i=1}^4L_i^{{\tilde{a}}}, \sum \limits _{i=1}^4L_i^{{\tilde{b}}} \le 4\). Hence, \(\frac{1}{4}\sum \limits _{i=1}^4|L_i^{{\tilde{a}}}-L_i^{{\tilde{b}}}| < 1\). \(\square\)

Proposition 6

Let \(\theta _i^{{\tilde{a}}}\) and \(\theta _i^{{\tilde{b}}}\) are angles of any two non-empty GFNs \({\tilde{a}}\) and \({\tilde{b}}\) respectively, then \(\prod _{i=1}^4\frac{\min (\theta _i^{{\tilde{a}}},\theta _i^{{\tilde{b}}})}{\max (\theta _i^{{\tilde{a}}},\theta _i^{{\tilde{b}}})} > 0\).

Proof

As \({\tilde{a}}\) and \({\tilde{b}}\) are non-empty GFNs, therefore \(\theta _i^{{\tilde{a}}}, \theta _i^{{\tilde{b}}} > 0\). Hence, the result follows immediately. \(\square\)

Theorem 1

If \({\tilde{a}}\) and \({\tilde{b}}\) are two IVFNs then \(S({\tilde{a}},{\tilde{b}})=1\) if, and only if, \({\tilde{a}}\) and \({\tilde{b}}\) are identical.

Proof

Consider two IVFNs \({\tilde{a}}=[{\tilde{a}}^L,{\tilde{a}}^U]=[(a_1^L, a_2^L, a_3^L, a_4^L;h_1^{{\tilde{a}}^L} ,h_2^{{\tilde{a}}^L}),(a_1^U,a_2^U,a_3^U,a_4^U;h_1^{{\tilde{a}}^U},h_2^{{\tilde{a}}^U})]\) and \({\tilde{b}}=[{\tilde{b}}^L,{\tilde{b}}^U]=[(b_1^L, b_2^L, b_3^L, b_4^L;h_1^{{\tilde{b}}^L} ,h_2^{{\tilde{b}}^L}),(b_1^U,b_2^U,b_3^U,b_4^U;h_1^{{\tilde{b}}^U},h_2^{{\tilde{b}}^U})]\). Assume that \({\tilde{a}}\) and \({\tilde{b}}\) are identical; that is, \(a_i^L=b_i^L\) and \(a_i^U=b_i^U\) for \(i=1,2,3,4\); \(h_i^{{\tilde{a}}^L}=h_i^{{\tilde{b}}^L}\) and \(h_i^{{\tilde{a}}^U}=h_i^{{\tilde{b}}^U}\) for \(i=1,2\); \(\text {ar}({\tilde{a}}^L)=\text {ar}({\tilde{b}}^L)\) and \(\text {ar}({\tilde{a}}^U)=\text {ar}({\tilde{b}}^U)\); \(L_i^{{\tilde{a}}^L}=L_i^{{\tilde{b}}^L}\) and \(L_i^{{\tilde{a}}^U}=L_i^{{\tilde{b}}^U}\) for \(i=1,2,3,4\); \(\theta _i^{{\tilde{a}}^L}=\theta _i^{{\tilde{b}}^L}\) and \(\theta _i^{{\tilde{a}}^U}=\theta _i^{{\tilde{b}}^U}\) for \(i=1,2,3,4\). Then, it follows that

$$\begin{aligned} S\left( {\tilde{a}}^L,{\tilde{b}}^L\right) =&\left( 1-\frac{1}{4}\sum \limits _{i=1}^4|a_i^L-b_i^L|\right) \left( 1-\frac{1}{2}(|h_1^{{\tilde{a}}^L}-h_1^{{\tilde{b}}^L}|+|h_2^{{\tilde{a}}^L}-h_2^{{\tilde{b}}^L}|)\right) \times&\\&\left( 1-\frac{1}{2}|\text {ar}({\tilde{a}}^L)-\text {ar}({\tilde{b}}^L)|\right) \left( 1-\frac{1}{4}\sum \limits _{i=1}^4|L_i^{{\tilde{a}}^L}-L_i^{{\tilde{b}}^L}|\right) \prod _{i=1}^4\frac{\min (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}{\max (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}&\\ =&(1-0)(1-0)(1-0)(1-0)\times 1 ,&\\ =&1.&\end{aligned}$$

Similarly, it can be obtained that \(S\left( {\tilde{a}}^U,{\tilde{b}}^U\right) =1\). Hence \(S\left( {\tilde{a}},{\tilde{b}}\right) =1\).

Conversely, let \(S({\tilde{a}},{\tilde{b}})=1\), then

$$\begin{aligned}&\left( 1-\frac{1}{4}\sum \limits _{i=1}^4|a_i^L-b_i^L|\right) \left( 1-\frac{1}{2}(|h_1^{{\tilde{a}}^L}-h_1^{{\tilde{b}}^L}|+|h_2^{{\tilde{a}}^L}-h_2^{{\tilde{b}}^L}|)\right) \left( 1-\frac{1}{2}|\text {ar}({\tilde{a}}^L)-\text {ar}({\tilde{b}}^L)|\right) \times&\\&\left( 1-\frac{1}{4}\sum \limits _{i=1}^4|L_i^{{\tilde{a}}^L}-L_i^{{\tilde{b}}^L}|\right) \prod _{i=1}^4\frac{\min (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}{\max (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}=1 , \end{aligned}$$

and

$$\begin{aligned}&\left( 1-\frac{1}{4}\sum \limits _{i=1}^4|a_i^U-b_i^U|\right) \left( 1-\frac{1}{2}(|h_1^{{\tilde{a}}^U}-h_1^{{\tilde{b}}^U}|+|h_2^{{\tilde{a}}^U}-h_2^{{\tilde{b}}^U}|)\right) \left( 1-\frac{1}{2}|\text {ar}({\tilde{a}}^U)-\text {ar}({\tilde{b}}^U)|\right) \times&\\&\left( 1-\frac{1}{4}\sum \limits _{i=1}^4|U_i^{{\tilde{a}}^U}-U_i^{{\tilde{b}}^U}|\right) \prod _{i=1}^4\frac{\min (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{b}}^U})}{\max (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{b}}^U})}=1 , \end{aligned}$$

Thus, it follows that

$$\begin{aligned} {\left\{ \begin{array}{ll} \left( 1-\frac{1}{4}\sum \limits _{i=1}^{4}|a_i^L-b_i^L|\right) =1,\\ \left( 1-\frac{1}{2}\left( |h_1^{{\tilde{a}}^L}-h_1^{{\tilde{b}}^L}|+|h_2^{{\tilde{a}}^L}-h_2^{{\tilde{b}}^L}|\right) \right) =1,\\ \left( 1-\frac{1}{2}|\text {ar}({\tilde{a}})-\text {ar}({\tilde{b}})|\right) =1,\\ \left( 1-\frac{1}{4}\sum \limits _{i=1}^{4}|L_i^{{\tilde{a}}^L}-L_i^{{\tilde{b}}^L}|\right) =1,\\ \frac{\min (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}{\max (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}=1 , \end{array}\right. } ~\text {and}~ {\left\{ \begin{array}{ll} \left( 1-\frac{1}{4}\sum \limits _{i=1}^{4}|a_i^U-b_i^U|\right) =1,\\ \left( 1-\frac{1}{2}\left( |h_1^{{\tilde{a}}^U}-h_1^{{\tilde{b}}^U}|+|h_2^{{\tilde{a}}^U}-h_2^{{\tilde{b}}^U}|\right) \right) =1,\\ \left( 1-\frac{1}{2}|\text {ar}({\tilde{a}})-\text {ar}({\tilde{b}})|\right) =1,\\ \left( 1-\frac{1}{4}\sum \limits _{i=1}^{4}|U_i^{{\tilde{a}}^U}-U_i^{{\tilde{b}}^U}|\right) =1,\\ \frac{\min (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{b}}^U})}{\max (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{b}}^U})}=1 , \end{array}\right. } \end{aligned}$$

Eventually, it follows

$$\begin{aligned} {\left\{ \begin{array}{ll} a_i^L=b_i^L ,\\ h_1^{{\tilde{a}}^L}=h_1^{{\tilde{b}}^L} \text {and} h_2^{{\tilde{a}}^L}=h_2^{{\tilde{b}}^L} ,\\ \text {ar}({\tilde{a}})=\text {ar}({\tilde{b}}) \\ L_i^{{\tilde{a}}^L}=L_i^{{\tilde{b}}^L} ,\\ \theta _i^{{\tilde{a}}^L}=\theta _i^{{\tilde{b}}^L}. \end{array}\right. } ~\text {and}~ {\left\{ \begin{array}{ll} a_i^U=b_i^U ,\\ h_1^{{\tilde{a}}^U}=h_1^{{\tilde{b}}^U} \text {and} h_2^{{\tilde{a}}^U}=h_2^{{\tilde{b}}^U} ,\\ \text {ar}({\tilde{a}})=\text {ar}({\tilde{b}}) \\ U_i^{{\tilde{a}}^U}=U_i^{{\tilde{b}}^U} ,\\ \theta _i^{{\tilde{a}}^U}=\theta _i^{{\tilde{b}}^U}. \end{array}\right. } \end{aligned}$$

\(\square\)

Theorem 2

If \({\tilde{a}}\) and \({\tilde{b}}\) are two IVFNs, then \(S({\tilde{a}},{\tilde{b}})=S({\tilde{b}},{\tilde{a}})\).

Proof

Let \({\tilde{a}}=[{\tilde{a}}^L,{\tilde{a}}^U]=[(a_1^L, a_2^L, a_3^L, a_4^L;h_1^{{\tilde{a}}^L} ,h_2^{{\tilde{a}}^L}),(a_1^U,a_2^U,a_3^U,a_4^U;h_1^{{\tilde{a}}^U},h_2^{{\tilde{a}}^U})]\) and \({\tilde{b}}=[{\tilde{b}}^L,{\tilde{b}}^U]=[(b_1^L, b_2^L, b_3^L, b_4^L;h_1^{{\tilde{b}}^L} ,h_2^{{\tilde{b}}^L}),(b_1^U,b_2^U,b_3^U,b_4^U;h_1^{{\tilde{b}}^U},h_2^{{\tilde{b}}^U})]\) be two IVFNs such that \(0 \le a_1^L \le a_2^L \le a_3^L \le a_4^L \le 1\), \(0 \le a_1^U \le a_2^U \le a_3^U \le a_4^U \le 1\), \(0 \le b_1^L \le b_2^L \le b_3^L \le b_4^L \le 1\) and \(0 \le b_1^U \le b_2^U \le b_3^U \le b_4^U \le 1\) , then we have

$$\begin{aligned} S\left( {\tilde{a}}^L,{\tilde{b}}^L\right) =&\left( 1-\frac{1}{4}\sum \limits _{i=1}^4|a_i^L-b_i^L|\right) \left( 1-\frac{1}{2}(|h_1^{{\tilde{a}}^L}-h_1^{{\tilde{b}}^L}|+|h_2^{{\tilde{a}}^L}-h_2^{{\tilde{b}}^L}|)\right) \times&\\&\left( 1-\frac{1}{2}|\text {ar}({\tilde{a}}^L)-\text {ar}({\tilde{b}}^L)|\right) \left( 1-\frac{1}{4}\sum \limits _{i=1}^4|L_i^{{\tilde{a}}^L}-L_i^{{\tilde{b}}^L}|\right) \prod _{i=1}^4\frac{\min (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}{\max (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})},&\\ =&\left( 1-\frac{1}{4}\sum \limits _{i=1}^4|b_i^L-a_i^L|\right) \left( 1-\frac{1}{2}(|h_1^{{\tilde{b}}^L}-h_1^{{\tilde{a}}^L}|+|h_2^{{\tilde{b}}^L}-h_2^{{\tilde{a}}^L}|)\right) \times&\\&\left( 1-\frac{1}{2}|\text {ar}({\tilde{b}}^L)-\text {ar}({\tilde{a}}^L)|\right) \left( 1-\frac{1}{4}\sum \limits _{i=1}^4|L_i^{{\tilde{b}}^L}-L_i^{{\tilde{a}}^L}|\right) \prod _{i=1}^4\frac{\min (\theta _i^{{\tilde{b}}^L},\theta _i^{{\tilde{a}}^L})}{\max (\theta _i^{{\tilde{b}}^L},\theta _i^{{\tilde{a}}^L})},&\\ =&S\left( {\tilde{b}}^L,{\tilde{a}}^L\right) . \end{aligned}$$

Similarly it follows that \(S\left( {\tilde{a}}^U,{\tilde{b}}^U\right) = S\left( {\tilde{b}}^U,{\tilde{a}}^U\right)\). Hence, \(S({\tilde{a}},{\tilde{b}})=S({\tilde{b}},{\tilde{a}})\). \(\square\)

Theorem 3

If \({\tilde{a}} \cap {\tilde{b}} \ne \Phi\) then \(0<S({\tilde{a}}, {\tilde{b}})\).

Proof

As \({\tilde{a}} \cap {\tilde{b}} \ne \Phi\), therefore \({\tilde{a}}\) and \({\tilde{b}}\) are non-empty GFNs. Hence, from the Propositions 345 and 6 the result follows immediately. \(\square\)

Theorem 4

If \({\tilde{a}}\) and \({\tilde{b}}\) are two IVFNs, \(0 \le S({\tilde{a}},{\tilde{b}}) \le 1\)

Proof

Let \({\tilde{a}}=[{\tilde{a}}^L,{\tilde{a}}^U]=[(a_1^L, a_2^L, a_3^L, a_4^L;h_1^{{\tilde{a}}^L} ,h_2^{{\tilde{a}}^L}),(a_1^U,a_2^U,a_3^U,a_4^U;h_1^{{\tilde{a}}^U},h_2^{{\tilde{a}}^U})]\) and \({\tilde{b}}=[{\tilde{b}}^L,{\tilde{b}}^U]=[(b_1^L, b_2^L, b_3^L, b_4^L;h_1^{{\tilde{b}}^L} ,h_2^{{\tilde{b}}^L}),(b_1^U,b_2^U,b_3^U,b_4^U;h_1^{{\tilde{b}}^U},h_2^{{\tilde{b}}^U})]\) be two IVFNs such that \(0 \le a_1^L \le a_2^L \le a_3^L \le a_4^L \le 1\), \(0 \le a_1^U \le a_2^U \le a_3^U \le a_4^U \le 1\), \(0 \le b_1^L \le b_2^L \le b_3^L \le b_4^L \le 1\) and \(0 \le b_1^U \le b_2^U \le b_3^U \le b_4^U \le 1\) , then from the Definition 13 , we have

$$\begin{aligned} S({\tilde{a}},{\tilde{b}})=\sqrt{S({\tilde{a}}^L,{\tilde{b}}^L) \times S({\tilde{a}}^U,{\tilde{b}}^U)} \end{aligned}$$

where

$$\begin{aligned} S\left( {\tilde{a}}^L,{\tilde{b}}^L\right) =&\left( 1-\frac{1}{4}\sum \limits _{i=1}^4|a_i^L-b_i^L|\right) \left( 1-\frac{1}{2}(|h_1^{{\tilde{a}}^L}-h_1^{{\tilde{b}}^L}|+|h_2^{{\tilde{a}}^L}-h_2^{{\tilde{b}}^L}|)\right) \times&\\&\left( 1-\frac{1}{2}|\text {ar}({\tilde{a}}^L)-\text {ar}({\tilde{b}}^L)|\right) \left( 1-\frac{1}{4}\sum \limits _{i=1}^4|L_i^{{\tilde{a}}^L}-L_i^{{\tilde{b}}^L}|\right) \prod _{i=1}^4\frac{\min (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}{\max (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}&\end{aligned}$$

and

$$\begin{aligned} S\left( {\tilde{a}}^U,{\tilde{b}}^U\right) =&\left( 1-\frac{1}{4}\sum \limits _{i=1}^4|a_i^U-b_i^U|\right) \left( 1-\frac{1}{2}(|h_1^{{\tilde{a}}^U}-h_1^{{\tilde{b}}^U}|+|h_2^{{\tilde{a}}^U}-h_2^{{\tilde{b}}^U}|)\right) \times&\\&\left( 1-\frac{1}{2}|\text {ar}({\tilde{a}}^U)-\text {ar}({\tilde{b}}^U)|\right) \left( 1-\frac{1}{4}\sum \limits _{i=1}^4|U_i^{{\tilde{a}}^U}-U_i^{{\tilde{b}}^U}|\right) \prod _{i=1}^4\frac{\min (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{b}}^U})}{\max (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{b}}^U})}&\end{aligned}$$

This implies,

$$\begin{aligned} {\left\{ \begin{array}{ll} \left( 1-\frac{1}{4}\sum \limits _{i=1}^{4}|a_i^L-b_i^L|\right) \le 1,\\ \left( 1-\frac{1}{2}\left( |h_1^{{\tilde{a}}^L}-h_1^{{\tilde{b}}^L}|+|h_2^{{\tilde{a}}^L}-h_2^{{\tilde{b}}^L}|\right) \right) \le 1,\\ \left( 1-\frac{1}{2}|\text {ar}({\tilde{a}})-\text {ar}({\tilde{b}})|\right) \le 1,\\ \left( 1-\frac{1}{4}\sum \limits _{i=1}^{4}|L_i^{{\tilde{a}}^L}-L_i^{{\tilde{b}}^L}|\right) \le 1,\\ \frac{\min (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}{\max (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}\le 1 , \end{array}\right. } \text {and} \\ {\left\{ \begin{array}{ll} \left( 1-\frac{1}{4}\sum \limits _{i=1}^{4}|a_i^U-b_i^U|\right) \le 1,\\ \left( 1-\frac{1}{2}\left( |h_1^{{\tilde{a}}^U}-h_1^{{\tilde{b}}^U}|+|h_2^{{\tilde{a}}^U}-h_2^{{\tilde{b}}^U}|\right) \right) \le 1,\\ \left( 1-\frac{1}{2}|\text {ar}({\tilde{a}})-\text {ar}({\tilde{b}})|\right) \le 1,\\ \left( 1-\frac{1}{4}\sum \limits _{i=1}^{4}|U_i^{{\tilde{a}}^U}-U_i^{{\tilde{b}}^U}|\right) \le 1,\\ \frac{\min (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{b}}^U})}{\max (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{b}}^U})}\le 1 , \end{array}\right. } \end{aligned}$$

Therefore \(S({\tilde{a}}^L,{\tilde{b}}^L) \le 1\) and \(S({\tilde{a}}^U,{\tilde{b}}^U) \le 1\). Further,

$$\begin{aligned} {\left\{ \begin{array}{ll} \left( 1-\frac{1}{4}\sum \limits _{i=1}^{4}|a_i^L-b_i^L|\right) \ge 0,\\ \left( 1-\frac{1}{2}\left( |h_1^{{\tilde{a}}^L}-h_1^{{\tilde{b}}^L}|+|h_2^{{\tilde{a}}^L}-h_2^{{\tilde{b}}^L}|\right) \right) \ge 0,\\ \left( 1-\frac{1}{2}|\text {ar}({\tilde{a}})-\text {ar}({\tilde{b}})|\right) \ge 0,\\ \left( 1-\frac{1}{4}\sum \limits _{i=1}^{4}|L_i^{{\tilde{a}}^L}-L_i^{{\tilde{b}}^L}|\right) \ge 0,\\ \frac{\min (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}{\max (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}\ge 0 , \end{array}\right. } \text {and} \\ {\left\{ \begin{array}{ll} \left( 1-\frac{1}{4}\sum \limits _{i=1}^{4}|a_i^U-b_i^U|\right) \ge 0,\\ \left( 1-\frac{1}{2}\left( |h_1^{{\tilde{a}}^U}-h_1^{{\tilde{b}}^U}|+|h_2^{{\tilde{a}}^U}-h_2^{{\tilde{b}}^U}|\right) \right) \ge 0,\\ \left( 1-\frac{1}{2}|\text {ar}({\tilde{a}})-\text {ar}({\tilde{b}})|\right) \ge 0,\\ \left( 1-\frac{1}{4}\sum \limits _{i=1}^{4}|U_i^{{\tilde{a}}^U}-U_i^{{\tilde{b}}^U}|\right) \ge 0,\\ \frac{\min (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{b}}^U})}{\max (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{b}}^U})}\ge 0 , \end{array}\right. } \end{aligned}$$

Therefore \(S({\tilde{a}}^L,{\tilde{b}}^L) \ge 0\) and \(S({\tilde{a}}^U,{\tilde{b}}^U) \ge 0\). Hence, the property \(0 \le S({\tilde{a}},{\tilde{b}}) \le 1\). \(\square\)

Theorem 5

Let \({\tilde{a}}_1\) and \({\tilde{a}}_2\) are two IVFNs. If \({\tilde{a}}_1 \ne {\tilde{a}}_2\), then \(0 \le S({\tilde{a}}_1,{\tilde{a}}_2) < 1\).

Proof

Proof is trivial. \(\square\)

Theorem 6

Let \({\tilde{a}}_1=\Phi\) and \({\tilde{a}}_2\) be arbitrary normal fuzzy number, then \(S({\tilde{a}}_1,{\tilde{a}}_2)=0\)

Proof

Proof is trivial. \(\square\)

Theorem 7

Let \({\tilde{a}}_1=\Phi\) and \({\tilde{a}}_2\) be arbitrary non-empty fuzzy number, then \(0 \le S({\tilde{a}}_1,{\tilde{a}}_2) < 1\)

Proof

As \({\tilde{a}}_1=\Phi\) and \({\tilde{a}}_2\) is non-empty, therefore they are not identical. Using Theorem 5, it follows that \(S({\tilde{a}},{\tilde{b}}) < 1\). Now, from the Theorem 4, the result follows immediately. \(\square\)

Theorem 8

If \({\tilde{a}}\), \({\tilde{b}}\) and \({\tilde{c}}\) are symmetric IVFNs and \({\tilde{b}}\) is the mirror image of \({\tilde{a}}\) with respect to the axis of symmetric of \({\tilde{c}}\), then \(S({\tilde{a}},{\tilde{c}})=S({\tilde{c}},{\tilde{b}})\)

Proof

As \({\tilde{a}}\), \({\tilde{b}}\), \({\tilde{c}}\) are symmetric IVFNs, therefore their left height and right heights are equal. As \({\tilde{b}}\) is the image of \({\tilde{a}}\), therefore heights of \({\tilde{a}}^L\) and \({\tilde{a}}^U\) are equal with heights of \({\tilde{b}}^L\) and \({\tilde{b}}^U\) (say \(h^L\) and \(h^U\)) respectively. Let \({\tilde{a}}=[(a_1^L, a_2^L, a_3^L, a_4^L;h^L ,h^L),(a_1^U,a_2^U,a_3^U,a_4^U;h^U,h^U)]\), \({\tilde{b}}=[(b_1^L, b_2^L, b_3^L, b_4^L;h^L ,h^L),(b_1^U,b_2^U,b_3^U,b_4^U;h^U,h^U)]\) and \({\tilde{c}}=[(c_1^L, c_2^L, c_3^L, c_4^L;h^{{\tilde{c}}^L} ,h^{{\tilde{c}}^L}),(c_1^U,c_2^U,c_3^U,c_4^U;h^{{\tilde{c}}^U},h^{{\tilde{c}}^U})]\), as shown in the Fig. 8, where \(h^{{\tilde{c}}^L}\) and \(h^{{\tilde{c}}^U}\) are the heights of the GFNs \({\tilde{c}}^L\) and \({\tilde{c}}^U\) respectively.

Let \(\theta _i^{{\tilde{a}}^L}\), \(\theta _i^{{\tilde{a}}^U}\), \(\theta _i^{{\tilde{b}}^L}\), \(\theta _i^{{\tilde{b}}^U}\), \(\theta _i^{{\tilde{c}}^L}\), \(\theta _i^{{\tilde{c}}^U}\) are the angles as defined in Definition 12, \(L_i^{{\tilde{a}}^L}\), \(L_i^{{\tilde{a}}^U}\), \(L_i^{{\tilde{b}}^L}\), \(L_i^{{\tilde{b}}^U}\), \(L_i^{{\tilde{c}}^L}\), \(L_i^{{\tilde{c}}^U}\) are the edge-lengths as defined in Definition 11, and \(\text {ar}({\tilde{a}}^L)\), \(\text {ar}({\tilde{a}}^U)\), \(\text {ar}({\tilde{b}}^L)\), \(\text {ar}({\tilde{b}}^U)\), \(\text {ar}({\tilde{c}}^L)\), \(\text {ar}({\tilde{c}}^U)\) are the areas as defined in Definition 10 of \({\tilde{a}}^L\), \({\tilde{a}}^L\), \({\tilde{b}}^L\), \({\tilde{b}}^L\), \({\tilde{c}}^L\), \({\tilde{c}}^L\) respectively. As \({\tilde{c}}\) is symmetric IVFN and \({\tilde{b}}\) is the image of \({\tilde{a}}\) with respect to the symmetric axis of \({\tilde{c}}\), therefore \(|a_i^L-c_i^L|=|c_i^L-b_i^L|\), \(|a_i^U-c_i^U|=|c_i^U-b_i^U|\), \(\theta _i^{{\tilde{a}}^L}=\theta _i^{{\tilde{b}}^L}\), \(\theta _i^{{\tilde{a}}^U}=\theta _i^{{\tilde{b}}^U}\), \(L_i^{{\tilde{a}}^L}=L_i^{{\tilde{b}}^L}\), \(L_i^{{\tilde{a}}^U}=L_i^{{\tilde{b}}^U}\), \(\text {ar}({\tilde{a}}^L)=\text {ar}({\tilde{b}}^L)\) and \(\text {ar}({\tilde{a}}^U)=\text {ar}({\tilde{b}}^U)\). Thus,

$$\begin{aligned} {\left\{ \begin{array}{ll} |a_i^L-c_i^L|=|c_i^L-b_i^L| ,\\ |\text {ar}({\tilde{a}}^L)-\text {ar}({\tilde{c}}^L)|=|\text {ar}({\tilde{c}}^L)-\text {ar}({\tilde{b}}^L)|, \\ |L_i^{{\tilde{a}}^L}-L_i^{{\tilde{c}}^L}|=|L_i^{{\tilde{c}}^L}-L_i^{{\tilde{b}}^L}|, \\ \min (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{c}}^L})=\min (\theta _i^{{\tilde{c}}^L},\theta _i^{{\tilde{b}}^L}), \\ \max (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{c}}^L})=\max (\theta _i^{{\tilde{c}}^L},\theta _i^{{\tilde{b}}^L}), \end{array}\right. } ~\text {and}\\ {\left\{ \begin{array}{ll} |a_i^U-c_i^U|=|c_i^U-b_i^U| ,\\ |\text {ar}({\tilde{a}}^U)-\text {ar}({\tilde{c}}^U)|=|\text {ar}({\tilde{c}}^U)-\text {ar}({\tilde{b}}^U)|, \\ |U_i^{{\tilde{a}}^U}-U_i^{{\tilde{c}}^U}|=|U_i^{{\tilde{c}}^U}-U_i^{{\tilde{b}}^U}|, \\ \min (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{c}}^U})=\min (\theta _i^{{\tilde{c}}^U},\theta _i^{{\tilde{b}}^U}), \\ \max (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{c}}^U})=\max (\theta _i^{{\tilde{c}}^U},\theta _i^{{\tilde{b}}^U}), \end{array}\right. } \end{aligned}$$

Hence from the definition 13 , the result follow immediately. \(\square\)

Fig. 8
figure 8

\({\tilde{a}}\), \({\tilde{b}}\) and \({\tilde{c}}\) are symmetric IVFNs and \({\tilde{b}}\) is the mirror image of \({\tilde{a}}\) with respect to symmetric axis of \({\tilde{c}}\)

Theorem 9

Consider \({\tilde{a}}=[0,1]\), \({\tilde{b}}_r \subseteq {\tilde{a}}\) and \({\tilde{b}}_r\) translate in \({\tilde{a}}\), then \(0 \le S({\tilde{a}},{\tilde{b}}_r)=S({\tilde{a}},{\tilde{b}}_s) \le 1\), \(r,s\in I=[0,1]\), .

Proof

Consider \({\tilde{a}}=[(0,0,1,1;1,1),(0,0,1,1;1,1)]\) and \({\tilde{b}}_r, {\tilde{b}}_s\subseteq {\tilde{a}}\). Then from the Proposition 1, geometric distance among \({\tilde{a}}^L\) and \({\tilde{b}}_r^L\), \({\tilde{a}}^U\) and \({\tilde{b}}_r^U\), \({\tilde{a}}^L\) and \({\tilde{b}}_s^L\), \({\tilde{a}}^U\) and \({\tilde{b}}_s^U\) are always remain constant. Again, under horizontal translation, height, edge-lengths, area and angles of \({\tilde{b}}_r^L, {\tilde{b}}_r^U, {\tilde{b}}_s^L, {\tilde{b}}_s^U\) remain invariant. Hence, the result follows immediately. \(\square\)

Corollary 1

If \({\tilde{a}}=[(0,0,0,0;1,1),(0,0,0,0;1,1)]\) and \({\tilde{b}}=[(1,1,1,1;1,1),(1,1,1,1;1,1)]\), then \(S({\tilde{a}},{\tilde{b}})=0\)

Proof

The proof is trivial. \(S({\tilde{a}},{\tilde{b}})=0\) that means \({\tilde{a}}\) and \({\tilde{b}}\) are completely dissimilar. \(\square\)

Corollary 2

If \({\tilde{a}}=[(m,m,m,m;1,1),(m,m,m,m;1,1)]\) and \({\tilde{b}}=[(n,n,n,n;1,1),(n,n,n,n;1,1)]\), then \(S({\tilde{a}},{\tilde{b}})= 1-|m-n|\).

Proof

For crisp-valued IVFN numbers \({\tilde{a}}\) and \({\tilde{b}}\) heights difference, areas difference and edge-lengths difference are zero. That is, \(|h_1^{{\tilde{a}}^L}-h_1^{{\tilde{b}}^L}|+|h_2^{{\tilde{a}}^L}-h_2^{{\tilde{b}}^L}|=0\), \(|h_1^{{\tilde{a}}^U}-h_1^{{\tilde{b}}^U}|+|h_2^{{\tilde{a}}^U}-h_2^{{\tilde{b}}^U}|=0\), \(\text {ar}({\tilde{a}}^L)-\text {ar}({\tilde{b}}^L)=0\), \(\text {ar}({\tilde{a}}^U)-\text {ar}({\tilde{b}}^U)=0\), \(\sum \limits _{i=1}^4|L_i^{{\tilde{a}}^L}-L_i^{{\tilde{b}}^L}|=0\) and \(\sum \limits _{i=1}^4|L_i^{{\tilde{a}}^U}-L_i^{{\tilde{b}}^U}|=0\). Also \(\theta _i^{{\tilde{a}}^L}=\theta _i^{{\tilde{b}}^L}=90^{\circ }\) and \(\theta _i^{{\tilde{a}}^U}=\theta _i^{{\tilde{b}}^U}=90^{\circ }\) (\(i=1,2,3,4\)); that is, \(\prod _{i=1}^4\frac{\min (\theta _i^{{\tilde{b}}^L},\theta _i^{{\tilde{a}}^L})}{\max (\theta _i^{{\tilde{b}}^L},\theta _i^{{\tilde{a}}^L})}=1\) and \(\prod _{i=1}^4\frac{\min (\theta _i^{{\tilde{b}}^U},\theta _i^{{\tilde{a}}^U})}{\max (\theta _i^{{\tilde{b}}^U},\theta _i^{{\tilde{a}}^U})}=1\). Hence, by the definition of proposed similarity measure

$$\begin{aligned} S({\tilde{a}}^L,{\tilde{b}}^L)=&\left( 1-\frac{1}{4}\sum \limits _{i=1}^4|m_i-n_i|\right) \left( 1-\frac{1}{2}(|h_1^{{\tilde{a}}^L}-h_1^{{\tilde{b}}^L}|+|h_2^{{\tilde{a}}^L}-h_2^{{\tilde{b}}^L}|)\right) \times \\&\left( 1-\frac{1}{2}|\text {ar}({\tilde{a}}^L)-\text {ar}({\tilde{b}}^L)|\right) \left( 1-\frac{1}{4}\sum \limits _{i=1}^4|L_i^{{\tilde{a}}^L}-L_i^{{\tilde{b}}^L}|\right) \prod _{i=1}^4\frac{\min (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})}{\max (\theta _i^{{\tilde{a}}^L},\theta _i^{{\tilde{b}}^L})},\\ =&(1-|m-n|)\times 1 \times 1 \times 1 \times 1 , \\ =&(1-|m-n|). \end{aligned}$$

and

$$\begin{aligned} S({\tilde{a}}^U,{\tilde{b}}^U)=&\left( 1-\frac{1}{4}\sum \limits _{i=1}^4|m_i-n_i|\right) \left( 1-\frac{1}{2}(|h_1^{{\tilde{a}}^U}-h_1^{{\tilde{b}}^U}|+|h_2^{{\tilde{a}}^U}-h_2^{{\tilde{b}}^U}|)\right) \times \\&\left( 1-\frac{1}{2}|\text {ar}({\tilde{a}}^U)-\text {ar}({\tilde{b}}^U)|\right) \left( 1-\frac{1}{4}\sum \limits _{i=1}^4|U_i^{{\tilde{a}}^U}-U_i^{{\tilde{b}}^U}|\right) \prod _{i=1}^4\frac{\min (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{b}}^U})}{\max (\theta _i^{{\tilde{a}}^U},\theta _i^{{\tilde{b}}^U})},\\ =&(1-|m-n|)\times 1 \times 1 \times 1 \times 1 , \\ =&(1-|m-n|). \end{aligned}$$

Thus, \(S({\tilde{a}},{\tilde{b}})= (1-|m-n|)\). \(\square\)

Corollary 3

If \({\tilde{a}}=[(m_1,m_2,m_3,m_4;1.0,1.0),(m_1,m_2,m_3,m_4;1.0,1.0)]\) and \({\tilde{b}}=[(n_1,n_2,n_3,n_4;0.0,0.0),(n_1,n_2,n_3,n_4;0.0,0.0)]\), then \(S({\tilde{a}},{\tilde{b}})=0\).

Proof

Here \(h_1^{{\tilde{a}}^L}=h_2^{{\tilde{a}}^L}=1\), \(h_1^{{\tilde{a}}^U}=h_2^{{\tilde{a}}^U}=1\), \(h_1^{{\tilde{b}}^L}=h_2^{{\tilde{b}}^L}=0\), \(h_1^{{\tilde{b}}^U}=h_2^{{\tilde{b}}^U}=0\). As, \(|h_1^{{\tilde{a}}^L}-h_1^{{\tilde{b}}^L}|=|h_2^{{\tilde{a}}^L}-h_2^{{\tilde{b}}^L}|=1\) and \(|h_1^{{\tilde{a}}^U}-h_1^{{\tilde{b}}^U}|=|h_2^{{\tilde{a}}^U}-h_2^{{\tilde{b}}^U}|=1\), so \(1-\frac{1}{2}(|h_1^{{\tilde{a}}^L}-h_1^{{\tilde{b}}^L}|+ |h_2^{{\tilde{a}}^L}-h_2^{{\tilde{b}}^L}|)=0\) and \(1-\frac{1}{2}(|h_1^{{\tilde{a}}^U}-h_1^{{\tilde{b}}^U}|+ |h_2^{{\tilde{a}}^U}-h_2^{{\tilde{b}}^U}|)=0\), Hence, using the proposed similarity measure 13, it follows that \(S({\tilde{a}},{\tilde{b}})=0\). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, M.K., Chutia, R. Similarity measure of the interval-valued fuzzy numbers and its application in risk analysis in paddy cultivation. J Ambient Intell Human Comput 13, 1829–1852 (2022). https://doi.org/10.1007/s12652-021-02949-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-02949-9

Keywords

Navigation