Skip to main content
Log in

ECG heartbeat arrhythmias classification: a comparison study between different types of spectrum representation and convolutional neural networks architectures

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

This research presents a comparison study between different representations of spectrograms and then feeding them to different convolutional neural network (CNN) architectures. The study uses two short-time Fourier transform (STFT) representations, namely, Log-scale and Mel-Scale in addition to Bi-Spectrum and the third-order cumulant. Meanwhile, four different CNN architectures have been utilized in the present study, namely, AOCT-NET, Mobile-Net, Squeeze-Net, and Shuffle-Net. The study has exploited 10,502 beats extracted from the standard MIT-BIH arrhythmia database and represent six different classes: normal beat (N), left bundle branch block beat (LBBB), right bundle branch block beat (RBBB), premature ventricular contraction (PVC), atrial premature beat (APB), and aberrated atrial premature (aAP). The study compares the accuracy, sensitivity, precision, and specificity rates of the spectrogram-based and CNN architecture models under study. This paper hypothesizes that ECG features can be extracted from different spectral representations and can lead to improving the understanding and detection of the human heart's different arrhythmias by feeding these features to different CNN models. The suggested models’ performance was evaluated by dividing the dataset into three subsets (Training 70%, Validation 15%, and Testing 15%) and the best overall performance among all used CNN architectures was MobileNet with an overall accuracy of 93.8%, while the best spectrum representation among all used was the bispectrum with an overall accuracy of 93.7%. It has been shown that the spectrum representations of ECG beat have provided significant information about heart performance and can be used significantly in arrhythmia classification using deep learning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and materials

The dataset analyzed during the current study was derived from public domain resources.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this work.

Corresponding author

Correspondence to Ali Mohammad Alqudah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqudah, A.M., Qazan, S., Al-Ebbini, L. et al. ECG heartbeat arrhythmias classification: a comparison study between different types of spectrum representation and convolutional neural networks architectures. J Ambient Intell Human Comput 13, 4877–4907 (2022). https://doi.org/10.1007/s12652-021-03247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03247-0

Keywords