Skip to main content
Log in

A BCS code in the f-OFDM system: a promising candidate for 5G wireless communication systems

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Recently, a novel BCS code differing from conventional concatenated (RS/BCH) codes has been proposed for LTE system. It achieved a significant improvement in the LTE system performance better than single codes and familiar concatenated (RS/BCH) codes. However, LTE systems that primarily depend on orthogonal frequency-division multiplexing (OFDM), no longer meet the demand of wireless-communication systems and their high data-rate requirements because of the rapid growth in the service aspect of such systems. In addition to high out-of-band emission (OOBE) and big peak to average power ratio (PAPR) of OFDM, it doesn’t meet the demand of 5G diverse service scenarios. Meanwhile, filtered OFDM (f-OFDM) is considered a candidate technique for 5G wireless communication systems which have OFDM features as well low OOBE. However, a trade-off exists among reducing OOBE, bit error rate (BER) degradation, and high PAPR. In this work, the BCS code is proposed for f-OFDM to enhance its system performance, while a root-raised-cosine windowed finite impulse response (FIR) filter is selected in f-OFDM to reduce OOBE levels. Results show that in the BPSK and QPSK modulation schemes, f-OFDM achieves a low level of OOBE after using an FIR digital filter against a high level of OFDM. Meanwhile, the proposed system using the BCS code enables remarkable improvement in BER performance and helps reduce PAPR better than conventional OFDM systems. Therefore, considering these features, the proposed system using the BCS code can be presented as a candidate for 5G wireless-communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • An C, Ryu HG (2018) Design and performance comparison of W-OFDM under the nonlinear HPA environment. Wirel Pers Commun 98(1):983–999

    Article  Google Scholar 

  • Ardakani A, Shabany M (2015) A novel area-efficient VLSI architecture for recursion computation in LTE turbo decoders. IEEE Trans Circuits Syst II Express Briefs 62(6):568–572. https://doi.org/10.1109/TCSII.2015.2407232

    Article  Google Scholar 

  • Bae JH, Abotabl A, Lin HP, Song KB, Lee J (2019) An overview of channel coding for 5G NR cellular communications. APSIPA Trans Signal Inf Process 8:1–14

    Article  Google Scholar 

  • Başar E (2015) Multiple-input multiple-output OFDM with index modulation. IEEE Signal Process. Lett. 22(12):2259–2263. https://doi.org/10.1109/LSP.2015.2475361

    Article  Google Scholar 

  • Bhurtah I, Catherine PC, Soyjaudah KMS (2015) Enhancing the error-correcting performance of LDPC codes for LTE and WIFI. In: International conference on computing, communication automation, pp 1406–1410. https://doi.org/10.1109/CCAA.2015.7148600

  • Cheng X, He Y, Ge B, He C (2016) A filtered ofdm using fir filter based on window function method. In: 2016 IEEE 83rd vehicular technology conference (VTC Spring), pp 1–5. https://doi.org/10.1109/VTCSpring.2016.7504065

  • Dai L, Wang Z, Yang Z (2012) Time-frequency training OFDM with high spectral efficiency and reliable performance in high speed environments. IEEE J Sel Areas Commun 30(4):695–707. https://doi.org/10.1109/JSAC.2012.120504

    Article  Google Scholar 

  • Dong L, Zhao H, Chen Y, Chen D, Wang T, Lu L, Zhang B, Hu L, Gu L, Li B, Yang H, Shen H, Tian T, Luo Z, Wei K (2017) Introduction on IMT-2020 5G trials in China. IEEE J Sel Areas Commun 35(8):1849–1866. https://doi.org/10.1109/JSAC.2017.2710678

    Article  Google Scholar 

  • Feng B, Jiao J, Zhou L, Wu S, Cao B, Zhang Q (2018) A novel high-rate polar-staircase coding scheme. In: 2018 IEEE 88th vehicular technology conference (VTC-Fall), pp 1–5. https://doi.org/10.1109/VTCFall.2018.8690625

  • Guan P, Wu D, Tian T, Zhou J, Zhang X, Gu L, Benjebbour A, Iwabuchi M, Kishiyama Y (2017) 5G field trials: OFDM-based waveforms and mixed numerologies. IEEE J Sel Areas Commun 35(6):1234–1243. https://doi.org/10.1109/JSAC.2017.2687718

    Article  Google Scholar 

  • Hajiyat ZRM, Sali A, Mokhtar M, Hashim F (2019) Channel coding scheme for 5G mobile communication system for short length message transmission. Wirel Pers Commun 106(2):377–400

    Article  Google Scholar 

  • Huang M, Liu A, Xiong NN, Wang T, Vasilakos AV (2020) An effective service-oriented networking management architecture for 5G-enabled internet of things. Comput Netw 173:107208

    Article  Google Scholar 

  • Hussain GA, Audah L (2018a) Downlink LTE system performance improvement by using BCH codes over LTE-MIMO channel. Int J Integr Eng 10(4):95–101

    Article  Google Scholar 

  • Hussain GA, Audah L (2018b) RS codes for downlink LTE system over LTE-MIMO channel. TELKOMNIKA Telecommun Comput Electron Control 16(6):2563–2569

    Google Scholar 

  • Hussain GA, Audah L (2020a) BCH codes for 5G wireless communication systems over multipath fading channel. Indones J Electr Eng Comput Sci 17(1):310–316

    Article  Google Scholar 

  • Hussain GA, Audah L (2020b) A novel BCS code in a downlink LTE system over an LTE-mimo channel. Telecommun Syst 74(4):467–476

    Article  Google Scholar 

  • Hussain GA, Audah L (2020c) RS codes with filtered-OFDM: a waveform contender for 5G mobile communication systems. Wirel Pers Commun 115(1):575–587

    Article  Google Scholar 

  • Hussain GA, Audah L (2020d) UFMC system performance improvement using RS codes for 5G communication system. Telkomnika 18(4):1843–1848

    Article  Google Scholar 

  • Hwang T, Yang C, Wu G, Li S, Ye Li G (2009) OFDM and its wireless applications: a survey. IEEE Trans Veh Technol 58(4):1673–1694. https://doi.org/10.1109/TVT.2008.2004555

    Article  Google Scholar 

  • Iscan O, Lentner D, Xu W (2016) A comparison of channel coding schemes for 5g short message transmission. In: 2016 IEEE Globecom workshops (GC Wkshps), pp 1–6. https://doi.org/10.1109/GLOCOMW.2016.7848804

  • Jamal S, Abdullah A, Rahman T, Abdullah K, Ramli HAM, Ismail AF (2014) Ber performance of OFDM system with the effect of error control code. In: 2014 Australasian telecommunication networks and applications conference (ATNAC), pp 228–232. https://doi.org/10.1109/ATNAC.2014.7020903

  • Li J, Bala E, Yang R (2014) Resource block filtered-OFDM for future spectrally agile and power efficient systems. Phys Commun 11:36–55

    Article  Google Scholar 

  • Li A, Xiang L, Chen T, Maunder RG, Al-Hashimi BM, Hanzo L (2016) VLSI implementation of fully parallel LTE turbo decoders. IEEE Access 4:323–346. https://doi.org/10.1109/ACCESS.2016.2515719

    Article  Google Scholar 

  • Li-fu L, Hai-wen L, Hong-liang L, Yong-jun G (2017) Research and implementation of viterbi decoding in TD-LTE system. In: 2017 IEEE 2nd advanced information technology, electronic and automation control conference (IAEAC), pp 890–894. https://doi.org/10.1109/IAEAC.2017.8054142

  • Lin Z, Ming J, Chaopei W (2013) An improved decoding of tail-biting convolutional codes for LTE systems. In: 2013 international conference on wireless communications and signal processing, pp 1–4. https://doi.org/10.1109/WCSP.2013.6677141

  • Lopez-Perez D, Chu X, Vasilakos AV, Claussen H (2014) Power minimization based resource allocation for interference mitigation in OFDMA femtocell networks. IEEE J Sel Areas Commun 32(2):333–344. https://doi.org/10.1109/JSAC.2014.141213

    Article  Google Scholar 

  • Mataveli LO, De Almeida C (2015) Complexity reduction of convolutional and turbo decoding based on reliability thresholds. Wirel Pers Commun 82(3):1279–1290

    Article  Google Scholar 

  • Michailow N, Matthé M, Gaspar IS, Caldevilla AN, Mendes LL, Festag A, Fettweis G (2014) Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Trans Commun 62(9):3045–3061. https://doi.org/10.1109/TCOMM.2014.2345566

    Article  Google Scholar 

  • Min Z, Junwei H, Jie M, Qiang D (2009) Research on an-based decode of tail-biting convolutional codes and their performance analyses used in lte system. In: 2009 international forum on information technology and applications, vol 2, pp 303–306. https://doi.org/10.1109/IFITA.2009.432

  • Mohamad M, Nilsson R, v d Beek J (2015) An analysis of out-of-band emission and in-band interference for precoded and classical ofdm systems. In: Proceedings of European wireless 2015; 21th European wireless conference, pp 1–5

  • Niu Y, Gao C, Li Y, Su L, Jin D, Vasilakos AV (2015) Exploiting device-to-device communications in joint scheduling of access and backhaul for mmwave small cells. IEEE J Sel Areas Commun 33(10):2052–2069. https://doi.org/10.1109/JSAC.2015.2435273

    Article  Google Scholar 

  • Niu Y, Li Y, Jin D, Su L, Vasilakos AV (2015) A survey of millimeter wave communications (mmwave) for 5G: opportunities and challenges. Wirel Netw 21(8):2657–2676

    Article  Google Scholar 

  • Pan Q, Wu J, Zheng X, Li J, Li S, Vasilakos AV (2020) Leveraging AI and intelligent reflecting surface for energy-efficient communication in 6G IOT. arXiv preprint arXiv:201214716

  • Selim A, Doyle L (2013) Improved out-of-band emissions reduction for ofdm systems. In: MILCOM 2013—2013 IEEE military communications conference, pp 107–111. https://doi.org/10.1109/MILCOM.2013.28

  • Shieh S (2015) Concatenated BCH and LDPC coding scheme with iterative decoding algorithm for flash memory. IEEE Commun Lett 19(3):327–330. https://doi.org/10.1109/LCOMM.2015.2391260

    Article  Google Scholar 

  • Shrestha R, Paily RP (2014) High-throughput turbo decoder with parallel architecture for LTE wireless communication standards. IEEE Trans Circuits Syst I Regul Pap 61(9):2699–2710. https://doi.org/10.1109/TCSI.2014.2332266

    Article  Google Scholar 

  • Studer C, Benkeser C, Belfanti S, Huang Q (2011) Design and implementation of a parallel turbo-decoder ASIC for 3G PP-LTE. IEEE J Solid-State Circuits 46(1):8–17. https://doi.org/10.1109/JSSC.2010.2075390

    Article  Google Scholar 

  • Sun Y, Cavallaro JR (2011) Efficient hardware implementation of a highly-parallel 3G PP LTE/LTE-advance turbo decoder. Integration 44(4):305–315

    Article  Google Scholar 

  • Tom A, Şahin A, Arslan H (2016) Suppressing alignment: joint PAPR and out-of-band power leakage reduction for OFDM-based systems. IEEE Trans Commun 64(3):1100–1109. https://doi.org/10.1109/TCOMM.2015.2512603

    Article  Google Scholar 

  • Van der Neut N, Maharaj BT, De Lange F, González GJ, Gregorio F, Cousseau J (2014) PAPR reduction in FBMC using an ACE-based linear programming optimization. EURASIP J Adv Signal Process 1:1–21

    Google Scholar 

  • Wang C, Wang S, Tian Y, Ma Y (2013) Research and simulation on the performance of turbo code and convolutional code in advanced orbiting systems. In: 2013 5th IEEE international symposium on microwave, antenna, propagation and EMC technologies for wireless communications, pp 487–491. https://doi.org/10.1109/MAPE.2013.6689940

  • Wang G, Shen H, Sun Y, Cavallaro JR, Vosoughi A, Guo Y (2014) Parallel interleaver design for a high throughput HSPA+/LTE multi-standard turbo decoder. IEEE Trans Circuits Syst I Regul Pap 61(5):1376–1389. https://doi.org/10.1109/TCSI.2014.2309810

    Article  Google Scholar 

  • Wang J, Jin A, Shi D, Wang L, Shen H, Wu D, Hu L, Gu L, Lu L, Chen Y, Wang J, Saito Y, Benjebbour A, Kishiyama Y (2017) Spectral efficiency improvement with 5G technologies: results from field tests. IEEE J Sel Areas Commun 35(8):1867–1875. https://doi.org/10.1109/JSAC.2017.2713498

    Article  Google Scholar 

  • Weitkemper P, Bazzi J, Kusume K, Benjebbour A, Kishiyama Y (2016) On regular resource grid for filtered OFDM. IEEE Commun Lett 20(12):2486–2489. https://doi.org/10.1109/LCOMM.2016.2572183

    Article  Google Scholar 

  • Wu D, Zhang X, Qiu J, Gu L, Saito Y, Benjebbour A, Kishiyama Y (2016) A field trial of F-OFDM toward 5G. In: 2016 IEEE Globecom workshops (GC Wkshps), pp 1–6. https://doi.org/10.1109/GLOCOMW.2016.7848810

  • Yan Z, He G, He W, Wang S, Mao Z (2016) High performance parallel turbo decoder with configurable interleaving network for LTE application. Integration 52:77–90

    Article  Google Scholar 

  • Yoo I, Kim B, Park I (2014) Tail-overlapped SISO decoding for high-throughput LTE-advanced turbo decoders. IEEE Trans Circuits Syst I Regul Pap 61(9):2711–2720. https://doi.org/10.1109/TCSI.2014.2332269

    Article  Google Scholar 

  • Zhang Y, Ryan WE (2009) Toward low LDPC-code floors: a case study. IEEE Trans Commun 57(6):1566–1573. https://doi.org/10.1109/TCOMM.2009.06.0700712

    Article  Google Scholar 

  • Zhang X, Jia M, Chen L, Ma J, Qiu J (2015a) Filtered-ofdm - enabler for flexible waveform in the 5th generation cellular networks. In: 2015 IEEE global communications conference (GLOBECOM), pp 1–6. https://doi.org/10.1109/GLOCOM.2015.7417854

  • Zhang Z, Chai X, Long K, Vasilakos AV, Hanzo L (2015b) Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection. IEEE Commun Mag 53(5):128–137. https://doi.org/10.1109/MCOM.2015.7105651

    Article  Google Scholar 

  • Zhang Z, Wang X, Long K, Vasilakos AV, Hanzo L (2015c) Large-scale mimo-based wireless backhaul in 5G networks. IEEE Wirel Commun 22(5):58–66. https://doi.org/10.1109/MWC.2015.7306538

    Article  Google Scholar 

  • Zhang L, Ijaz A, Xiao P, Quddus A, Tafazolli R (2017a) Subband filtered multi-carrier systems for multi-service wireless communications. IEEE Trans Wirel Commun 16(3):1893–1907. https://doi.org/10.1109/TWC.2017.2656904

    Article  Google Scholar 

  • Zhang L, Ijaz A, Xiao P, Tafazolli R (2017b) Multi-service system: an enabler of flexible 5G air interface. IEEE Commun Mag 55(10):152–159. https://doi.org/10.1109/MCOM.2017.1600916

    Article  Google Scholar 

  • Zhang L, Ijaz A, Xiao P, Molu MM, Tafazolli R (2018) Filtered OFDM systems, algorithms, and performance analysis for 5G and beyond. IEEE Trans Commun 66(3):1205–1218. https://doi.org/10.1109/TCOMM.2017.2771242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukman Audah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, G.A., Audah, L. A BCS code in the f-OFDM system: a promising candidate for 5G wireless communication systems. J Ambient Intell Human Comput 13, 3963–3972 (2022). https://doi.org/10.1007/s12652-021-03254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03254-1

Keywords

Navigation