Skip to main content
Log in

Secure quantum fog computing model based on blind quantum computation

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

As a computing service platform closer to users, fog computing has many advantages such as extremely low latency, good mobility, accurate location perception and wide distribution. It has developed rapidly in recent years. However, due to the wide distribution of fog nodes, complex network environments, and limited resources, the security of fog nodes is vulnerable to a variety of attacks, such as denial of service and abuse of resources. In order to effectively deal with these attacks, this paper proposes a quantum fog computing model based on blind quantum computation and verifiable quantum secret sharing. The model mainly relies on blind quantum computation to realize the security joint operation characteristics of multiple fog nodes, and the identity verifiable and channel detection protection features provided by the quantum secret sharing protocol, which can not only efficiently perform the functions of the classic fog computing, but also guarantee the security of information transmission and data calculation. Through the complete security analysis, the new quantum fog computing model proposed in this paper can effectively resist on a variety of fog computing attacks, thus achieving information security protection in both the content and process of fog computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Affleck I, Kennedy T, Lieb EH, Tasaki H (1988) Valence bond ground states in isotropic quantum antiferromagnets. Commun Math Phys 115(3):477–528

    Article  MathSciNet  Google Scholar 

  • Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457–3457

    Article  Google Scholar 

  • Barz S, Kashefi E, Broadbent A, Fitzsimons JF, Zeilinger A, Walther P (2012) Demonstration of blind quantum computing. Science 335(6066):303–308

    Article  MathSciNet  Google Scholar 

  • Briegel HJ, Raussendorf R (2001) Persistent entanglement in arrays of interacting particles. Phys Rev Lett 86(5):910–913

    Article  Google Scholar 

  • Broadbent, A, Fitzsimons J, Kashefi E (2009) Universal blind quantum computation. In: 2009 50th annual IEEE symposium on foundations of computer science, IEEE, pp 517–526

  • Chiang M, Zhang T (2016) Fog and iot: an overview of research opportunities. IEEE Internet Things 3(6):854–864

    Article  Google Scholar 

  • Childs AM (2005) Secure assisted quantum computation. Quantum Inf Comput 5(6):456–466

    MathSciNet  MATH  Google Scholar 

  • Deutsch DE (1989) Quantum computational networks. Proc R Soc Lond Ser Contain Papers Math Phys Character 425(1868):73–90

    MathSciNet  MATH  Google Scholar 

  • Dou Z, Xu G, Chen X, Yuan K (2019) Rational non-hierarchical quantum state sharing protocol. CMC-Comput Mater Con 58(2):335–347

    Google Scholar 

  • Kong X, Qin L, Wu C, Fang Y, He J, Sun Z (2016) Multiple-server flexible blind quantum computation in networks. Int Nt J Theor Phys 55(6):3001–3007

    Article  Google Scholar 

  • Li Q, Chan WH, Wu C, Wen Z (2014) Triple-server blind quantum computation using entanglement swapping. Phys Rev A 89(4):040302

    Article  Google Scholar 

  • Li Q, Li Z, Chan WH, Zhang S, Liu C (2018) Blind quantum computation with identity authentication. Phys Rev A 382(14):938–941

    MathSciNet  Google Scholar 

  • Liu XF, Yan XH, Yao ZQ (2012) Multiparty quantum secret sharing protocol with authentication. J Chin Comput Sys 33(11):2518–2521

    Google Scholar 

  • Liu W, Chen Z, Liu J, Su Z, Chi L (2018) Full-blind delegating private quantum computation. CMC-Comput Mater Contin 56(2):211–223

    Google Scholar 

  • Morimae T (2012) Continuous-variable blind quantum computation. Phys Rev Lett 109(23):230502

    Article  Google Scholar 

  • Morimae T, Fujii K (2012) Blind topological measurement-based quantum computation. Nat Commun 3:1036–1037

    Article  Google Scholar 

  • Morimae T, Fujii K (2013) Secure entanglement distillation for double-server blind quantum computation. Phys Rev Lett 111(2):020502

    Article  Google Scholar 

  • Mell P, Grance T (2011) The NIST definition of cloud computing. Commun ACM 53(6):50–53

  • Qu Z, Zhu T, Wang J, Wang X (2018) A novel quantum stegonagraphy based on brown states. CMC-Comput Mater Contin 56(1):47–59

    Google Scholar 

  • Qu Z, Wu S, Liu W, Wang X (2019) Analysis and improvement of steganography protocol based on bell states in noise environment. CMC-Comput Mater Con 59(2):607–624

    Google Scholar 

  • Raussendorf R, Briegel HJ (2001) A one-way quantum computer. Phys Rev Lett 86(22):5188–5189

    Article  Google Scholar 

  • Raussendorf R, Harrington J, Goyal K (2007) Topological fault-tolerance in cluster state quantum computation. New J Phys 9(6):199–199

    Article  MathSciNet  Google Scholar 

  • Sueki T, Koshiba T, Morimae T (2013) Ancilla-̄driven universal blind quantum computation. Phys Rev A 87(6):060301

    Article  Google Scholar 

  • Sun Y, Chen Y, Ahmad H, Wei Z (2019) An asymmetric controlled bidirectional quantum state transmission protocol. CMC-Comput Mater Contin 59(1):215–227

    Google Scholar 

  • Tan X, Feng Z, Jiang L, Fang A (2013) Verifiable quantum secret sharing protocol. In: 2013 Fourth international conference on emerging intelligent data and web technologies, IEEE, pp 227–230

  • Tan X, Li X, Yang P (2018) Perfect quantum teleportation via bell states. CMC-Comput Mater Con 57(3):495–503

    Google Scholar 

  • Vaquero LM, Rodero-Merino L (2014) Finding your way in the fog: towards a comprehensive definition of fog computing. Acm Sigcomm Comp Com 44(5):27–32

    Article  Google Scholar 

  • Wenqian L (2017) The study on key problems of secure multi-party quantum computation. Southeast University, Jiangsu

    Google Scholar 

  • Yi S, Hao Z, Qin Z, Li Q (2015) Fog computing: platform and applications. In: 2015 Third IEEE workshop on hot topics in web systems and technologies (HotWeb), IEEE, pp 73–78

  • Zhang H, Qiu Y, Chu X, Long K, Leung VC (2017) Fog radio access networks: mobility management, interference mitigation, and resource optimization. IEEE Wirel Commun Le 24(6):120–127

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foun- dation of China (No. 61373131, 61601358, 61501247, 61672290, 61303039, 61232016), Natural Science Foundation of Jiangsu Province (Grant No. BK20171458), Sichuan Youth Science and Technique Foundation (No.2017JQ0048), Open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) (SKLNST-2020-1-17), PAPD and CICAEET funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguo Qu or Min Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Z., Wang, K. & Zheng, M. Secure quantum fog computing model based on blind quantum computation. J Ambient Intell Human Comput 13, 3807–3817 (2022). https://doi.org/10.1007/s12652-021-03402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03402-7

Keywords

Navigation