Skip to main content
Log in

Skin lesion classification in dermoscopic images using stacked Convolutional Neural Network

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Skin lesion detection and classification is always observed as a difficult problem to solve. Manual detection of skin lesions via visual image inspection can be time-consuming and tedious. Automatic diagnosis and classification are considered a critical problem to solve because of the involvement of many factors like different image sizes, hairs in the image, bad color schemes, ruler marker, low-contrast, variation in lesion sizes, and gel bubble. Different methodologies were proposed by the researchers in the Dermatology Pigmented lesion classification. Researchers work on the binary class problem for the detection of Melanocytic lesions from the normal one. This study makes use of the MNIST HAM10000 dataset published by International Skin Image Collaboration. The dataset consists of seven classes of skin cancer diseases. Furthermore in this research, our stacked CNN model proves its superiority by achieving 95.2% accuracy along with data augmentation and image preprocessing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analysed during the current study are not publicly available due to Third Party Involvement (Kaggle) for the generation of the dataset. The dataset is available from the corresponding author on reasonable request.

References

  • Adegun A, Viriri S (2021) Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art. Artif Intell Rev 54:811–841

    Article  Google Scholar 

  • Akram T, Khan MA, Sharif M, Yasmin M (2018) Skin lesion segmentation and recognition using multichannel saliency estimation and m-svm on selected serially fused features. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-018-1051-5

    Article  Google Scholar 

  • Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AWT, Wu Y, Boot A, Covington KR, Gordenin DA, Bergstrom EN et al (2020) The repertoire of mutational signatures in human cancer. Nature 578(7793):94–101

    Article  Google Scholar 

  • Ali ARA, Deserno TM (2012) A systematic review of automated melanoma detection in dermatoscopic images and its ground truth data. In: Medical Imaging 2012: Image Perception, Observer Performance, and Technology Assessment, International Society for Optics and Photonics, vol 8318, p 83181I

  • Argenziano G, Soyer HP (2001) Dermoscopy of pigmented skin lesions-a valuable tool for early. Lancet Oncol 2(7):443–449

    Article  Google Scholar 

  • Arora R, Raman B, Nayyar K, Awasthi R (2021) Automated skin lesion segmentation using attention-based deep convolutional neural network. Biomed Signal Process Control 65:102358. https://doi.org/10.1016/j.bspc.2020.102358

    Article  Google Scholar 

  • Bachert SE, McDowell A, Piecoro D, Baldwin Branch L (2020) Serous tubal intraepithelial carcinoma: a concise review for the practicing pathologist and clinician. Diagnostics 10(2):102

    Article  Google Scholar 

  • Baig R, Bibi M, Hamid A, Kausar S, Khalid S (2020) Deep learning approaches towards skin lesion segmentation and classification from dermoscopic images—a review. Curr Med Imaging 16(5):513–533

    Article  Google Scholar 

  • Bergeron S, Arthurs B, Sanft D, Mastromonaco C, Burnier M Jr (2020) Optical coherence tomography of peri-ocular skin cancers: an optical biopsy. Ocular Oncol Pathol. https://doi.org/10.1159/000511188

    Article  Google Scholar 

  • Bissoto A, Perez F, Ribeiro V, Fornaciali M, Avila S, Valle E (2018) Deep-learning ensembles for skin-lesion segmentation, analysis, classification: Recod titans at isic challenge 2018. arXiv preprint arXiv:180808480

  • Christlein V, Spranger L, Seuret M, Nicolaou A, Kral P, Maier A (2019) Deep generalized max pooling. In: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, https://doi.org/10.1109/ICDAR.2019.00177

  • Codella NC, Nguyen QB, Pankanti S, Gutman DA, Helba B, Halpern AC, Smith JR (2017) Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J Res Dev 61(4/5):5–1

    Article  Google Scholar 

  • Codella N, Cai J, Abedini M, Garnavi R, Halpern A, Smith JR (2015) Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In: International workshop on machine learning in medical imaging, Springer, pp 118–126

  • Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, Helba B, Kalloo A, Liopyris K, Marchetti M, et al. (2019) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv preprint arXiv:190203368

  • Dhivyaa C, Sangeetha K, Balamurugan M, Amaran S, Vetriselvi T, Johnpaul P (2020) Skin lesion classification using decision trees and random forest algorithms. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-02675-8

    Article  Google Scholar 

  • Dunker S, Motivans E, Rakosy D, Boho D, Mäder P, Hornick T, Knight TM (2021) Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytol 229(1):593–606

    Article  Google Scholar 

  • El Abbadi N (2014) Automatic segmentation of skin lesions using histogram thresholding. J Comput Sci 10:632–639. https://doi.org/10.3844/jcssp.2014.632.639

    Article  Google Scholar 

  • Farahani A, Mohseni H (2021) Medical image segmentation using customized u-net with adaptive activation functions. Neural Comput Appl 33:6307–6323

    Article  Google Scholar 

  • Faziloglu Y, Stanley RJ, Moss RH, Van Stoecker W, McLean RP (2003) Colour histogram analysis for melanoma discrimination in clinical images. Skin Res Technol 9(2):147–156

    Article  Google Scholar 

  • Feit NE, Dusza SW, Marghoob AA (2004) Melanomas detected with the aid of total cutaneous photography. Br J Dermatol 150(4):706–714

    Article  Google Scholar 

  • Feng J, Isern NG, Burton SD, Hu JZ (2013) Studies of secondary melanoma on c57bl/6j mouse liver using 1h nmr metabolomics. Metabolites 3(4):1011–1035

    Article  Google Scholar 

  • Gallego G, Gehrig M, Scaramuzza D (2019) Focus is all you need: Loss functions for event-based vision. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, https://doi.org/10.1109/CVPR.2019.01256

  • Garg S, Jindal B (2020) Skin lesion segmentation using k-mean and optimized fire fly algorithm. Multimed Tools Appl 1–14

  • Garg R, Maheshwari S, Shukla A (2021) Decision support system for detection and classification of skin cancer using CNN. In: Innovations in Computational Intelligence and Computer Vision, Springer, pp 578–586

  • Javed R, Rahim MSM, Saba T, Rehman A (2020) A comparative study of features selection for skin lesion detection from dermoscopic images. Netw Model Anal Health Inform Bioinform 9(1):4

    Article  Google Scholar 

  • Jha D, Riegler MA, Johansen D, Halvorsen P, Johansen HD (2020) Doubleu-net: A deep convolutional neural network for medical image segmentation. arXiv preprint arXiv:200604868

  • Lee H, Song J (2019) Introduction to convolutional neural network using Keras; an understanding from a statistician. Commun Stat Appl Methods. https://doi.org/10.29220/CSAM.2019.26.6.591

    Article  Google Scholar 

  • Lin BS, Michael K, Kalra S, Tizhoosh HR (2017) Skin lesion segmentation: U-nets versus clustering. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp 1–7

  • Lozano A, Hayes JC, Compton LM, Azarnoosh J, Hassanipour F (2020) Determining the thermal characteristics of breast cancer based on high-resolution infrared imaging, 3d breast scans, and magnetic resonance imaging. Sci Rep 10(1):1–14

    Article  Google Scholar 

  • Mishra AK, Das SK, Roy P, Bandyopadhyay S (2020) Identifying COVID19 from chest CT images: a Deep Convolutional Neural Networks based approach. J Healthcare Eng. https://doi.org/10.1155/2020/8843664

    Article  Google Scholar 

  • Nam H, Han B (2016) Learning multi-domain Convolutional Neural Networks for visual tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2016.465

  • Nehal K, Oliveria S, Marghoob A, Christos P, Dusza S, Tromberg J, Halpern A (2002) Use of and beliefs about baseline photography in the management of patients with pigmented lesions: a survey of dermatology residency programmes in the united states. Melanoma Res 12(2):161–167

    Article  Google Scholar 

  • Nisar H, Ch’ng YK, Ho YK (2020) Automatic segmentation and classification of eczema skin lesions using supervised learning. In: 2020 IEEE Conference on Open Systems (ICOS), IEEE, pp 25–30

  • Pai K, Giridharan A (2019) Convolutional neural networks for classifying skin lesions. In: TENCON 2019-2019 IEEE Region 10 Conference (TENCON), IEEE, pp 1794–1796

  • Panjehpour M, Julius CE, Phan MN, Vo-Dinh T, Overholt S (2002) Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers. Lasers Surg Med 31(5):367–373

    Article  Google Scholar 

  • Pellacani G, Seidenari S (2002) Comparison between morphological parameters in pigmented skin lesion images acquired by means of epiluminescence surface microscopy and polarized-light videomicroscopy. Clin Dermatol 20(3):222–227

    Article  Google Scholar 

  • Pellacani G, Grana C, Seidenari S (2004) Automated description of colours in polarized-light surface microscopy images of melanocytic lesions. Melanoma Res 14(2):125–130

    Article  Google Scholar 

  • Pour MP, Seker H (2020) Transform domain representation-driven convolutional neural networks for skin lesion segmentation. Expert Syst Appl 144:113129

    Article  Google Scholar 

  • Razmjooy N, Ashourian M, Karimifard M, Estrela VV, Loschi HJ, do Nascimento D, França RP, Vishnevski M (2020) Computer-aided diagnosis of skin cancer: a review. Curr Med Imaging 16(7):781–793

    Article  Google Scholar 

  • Recalcati S, Barbagallo T, Frasin L, Prestinari F, Cogliardi A, Provero M, Dainese E, Vanzati A, Fantini F (2020) Acral cutaneous lesions in the time of COVID-19. J Eur Acad Dermatol Venereol 34(8):e346–e347

    Article  Google Scholar 

  • Rey-Barroso L, Burgos-Fernández FJ, Delpueyo X, Ares M, Royo S, Malvehy J, Puig S, Vilaseca M (2018) Visible and extended near-infrared multispectral imaging for skin cancer diagnosis. Sensors 18(5):1441

    Article  Google Scholar 

  • Rohrbach DJ, Muffoletto D, Huihui J, Saager R, Keymel K, Paquette A, Morgan J, Zeitouni N, Sunar U (2014) Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging. Acad Radiol 21(2):263–270

    Article  Google Scholar 

  • Roldán FA (2014) Ultrasound skin imaging. Actas Dermo-Sifiliográficas (English Edition) 105(10):891–899

    Article  Google Scholar 

  • Ruini C, Rahimi F, Fiocco Z, French LE, Hartmann D, Oppel E, Sattler E (2021a) Optical coherence tomography for patch test grading: a prospective study on its use for noninvasive diagnosis of allergic contact dermatitis. Contact Dermatitis 84(3):183–191

    Article  Google Scholar 

  • Ruini C, Schuh S, Sattler E, Welzel J (2021b) Line-field confocal optical coherence tomography–practical applications in dermatology and comparison with established imaging methods. Skin Res Technol 27(3):340–352

    Article  Google Scholar 

  • Sadeghi M, Razmara M, Lee TK, Atkins MS (2011) A novel method for detection of pigment network in dermoscopic images using graphs. Comput Med Imaging Graph 35(2):137–143

    Article  Google Scholar 

  • Sforza G, Castellano G, Arika SK, LeAnder RW, Stanley RJ, Stoecker WV, Hagerty JR (2012) Using adaptive thresholding and skewness correction to detect gray areas in melanoma in situ images. IEEE Trans Instrum Meas 61(7):1839–1847

    Article  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. Cancer J Clin 69(1):7–34

    Article  Google Scholar 

  • Sikkandar MY, Alrasheadi BA, Prakash N, Hemalakshmi G, Mohanarathinam A, Shankar K (2021) Deep learning based an automated skin lesion segmentation and intelligent classification model. J Ambient Intell Human Comput 12(3):3245–3255

    Article  Google Scholar 

  • Stoecker WV, Gupta K, Stanley RJ, Moss RH, Shrestha B (2005) Detection of asymmetric blotches (asymmetric structureless areas) in dermoscopy images of malignant melanoma using relative color. Skin Res Technol 11(3):179–184

    Article  Google Scholar 

  • Sumithra R, Suhil M, Guru D (2015) Segmentation and classification of skin lesions for disease diagnosis. Procedia Comput Sci 45:76–85

    Article  Google Scholar 

  • Tarver T (2012) American cancer society. Cancer facts and figures 2014. J Consumer Health Internet 16:366–367

    Article  Google Scholar 

  • Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL (2018) Ovarian cancer statistics, 2018. Cancer J Clin 68(4):284–296

    Article  Google Scholar 

  • Vasconcelos CN, Vasconcelos BN (2020) Experiments using deep learning for dermoscopy image analysis. Pattern Recogn Lett 139:95–103

    Article  Google Scholar 

  • Wang L, Yang S, Yang S, Zhao C, Tian G, Gao Y, Chen Y, Lu Y (2019) Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the yolov2 neural network. World J Surg Oncol 17(1):1–9

    Article  Google Scholar 

  • White R, Rigel DS, Friedman RJ (1991) Computer applications in the diagnosis and prognosis of malignant melanoma. Dermatol Clin 9(4):695–702

    Article  Google Scholar 

  • Xie F, Yang J, Liu J, Jiang Z, Zheng Y, Wang Y (2020) Skin lesion segmentation using high-resolution convolutional neural network. Comput Methods Programs Biomed 186:105241

    Article  Google Scholar 

  • Yousaf A, Umer M, Sadiq S, Ullah S, Mirjalili S, Rupapara V, Nappi M (2021) Emotion recognition by textual tweets classification using voting classifier (lr-sgd). IEEE Access 9:6286–6295. https://doi.org/10.1109/ACCESS.2020.3047831

    Article  Google Scholar 

  • Yuan Y (2017) Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. arXiv preprint arXiv:170305165

  • Zhen S, Cheng M, Yb T, Yf W, Juengpanich S, Zy J, Yk J, Yan Yy LW, Jm L et al (2020) Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Front Oncol 10:680

    Article  Google Scholar 

Download references

Funding

The funding agency had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. This research was supported by National Research Foundation of Korea (Grant NRF-2019R1A2C1006159).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Umer, Ahmed Sohaib or Hamza Ahmad Madni.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, A., Umer, M., Hafeez, U. et al. Skin lesion classification in dermoscopic images using stacked Convolutional Neural Network. J Ambient Intell Human Comput 14, 3551–3565 (2023). https://doi.org/10.1007/s12652-021-03485-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03485-2

Keywords

Navigation