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Abstract
Dominant emergency action should be adopted in the case of an emergency situation. Emergency is interpreted as limited 
time and information, harmfulness and uncertainty, and decision-makers are often critically bound by uncertainty and risk. 
This framework implements an emergency decision-making approach to address the emergency situation of COVID-19 in a 
spherical fuzzy environment. As the spherical fuzzy set (SFS) is a generalized framework of fuzzy structure to handle more 
uncertainty and ambiguity in decision-making problems (DMPs). Keeping in view the features of the SFSs, the purpose of 
this paper is to present some robust generalized operating laws in accordance with the Einstein norms. In addition, list of 
propose aggregation operators using Einstein operational laws under spherical fuzzy environment are developed. Further-
more, we design the algorithm based on the proposed aggregation operators to tackle the uncertainty in emergency decision 
making problems. Finally, numerical case study of COVID-19 as an emergency decision making is presented to demonstrate 
the applicability and validity of the proposed technique. Besides, the comparison of the existing and the proposed technique 
is established to show the effectiveness and validity of the established technique.

Keywords Spherical fuzzy sets · Generalized Einstein aggregation operators · Emergency decision making technique · 
COVID-19

1 Introduction

In the 21st century, with the rapid economic globalization 
growth and the acceleration of industrialization, environ-
mental problems, people are facing with several disasters 
such as epidemic, extremist attacks, earthquakes, storms 
and other natural disasters that are quite sensitive to human 

beings. An epidemic of respirational virus triggered by a 
novel coronavirus disease (COVID-19) that was first spotted 
in Wuhan City, Hubei Province, China and which has now 
spotted in above 200 places globally, including cases in the 
United States, Italy, England, Germany, Iran and Pakistan 
(WHO COVID-19 Dashboard 2021) . It has become domi-
nated headline all over the world. The virus is new and rap-
idly scattering all over the world. There are various uncer-
tainties regarding its origins, nature, and development. The 
number of people infected with the COVID-19 is increasing 
day by day. People are being isolated. Clinical masks and 
gloves, frequently used as a fence to epidemiologic spread, 
are selling out, however fitness authorities for example the 
World Health Organization (WHO) and the Centers for Dis-
ease Control and Prevention (Centers for Disease Control 
and Prevention 2019) recommend people that wearing masks 
and gloves are not beneficial or essential for avoiding infec-
tion in healthy people. The anxiety of COVID-19 is expected 
to be due to its novelty and the uncertainties about how bad 
the recent outbreak might become. The anxiety of COVID-
19 is much larger than the anxiety of seasonal influenza, 
however, the latter has killed considerably more people. In 
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such type of emergencies, decision makers must be split 
with some arrangements to lessen and release the infected 
lives. To date mostly affected countries (WHO COVID-19 
Dashboard 2021) are from America, Europe and South-East 
Asia, because they make mistake of not locked down at early 
stage. Till date, it has been spread to most of the countries 
as per WHO report. Around a million population is infected 
by this disease in which around 1,305,164 deaths reported 
(Johns Hopkins CSSE 2020). The worst affected part of the 
world for this outbreak is America, where around 22,960,102 
confirmed cases are reported. Among all countries around 
the world United States, Italy, Spain are in the top list of 
affected countries (WHO COVID-19 Dashboard 2021). The 
numbers of COVID-19 patients increasing very rapidly and 
till date it is going to touch the figure of a million, in which 
mostly affected countries are from United States, Europe and 
Asia. Although it started from china even though US and 
Europe are in top of the list of infected patients.

The COVID-19 is affecting 209 countries and territories 
around the globe and 2 international conveyances. As of 
November 15, 2020, Global update; more than 53,507,282 
(Johns Hopkins CSSE 2020) cases have been confirmed 
globally. At least 1,305,164 (Pakistan COVID-19 Dashboard 
2019) deaths have been attributed to the disease, most in 
mainland china, Italy, Iran, USA, UK etc. with more than 
1000 of deaths in other countries. More than 36769792 
(Pakistan COVID-19 Dashboard 2019) people have recov-
ered. The risk of it spreading further is very high. The pan-
demic has resulted in travel restrictions and nationwide lock-
downs in several countries.

In the case of an emergency, decision makers or disaster 
response departments should implement strategies or select 
an appropriate emergency strategy to avoid further escalation 
of the crisis. It is a matter for the evolving strategy sector 
to take rapid and effective decisions. Emergency decision-
making as an integral part of the disaster response has been 
a significant task for many governments and a subject of dis-
cussion in academic circles. Under this scenario, when mak-
ing decisions, people are usually bound logical rather than 
completely reasonable. It is therefore important to establish 
decision-making approaches that understand human actions 
in order to provide people with efficient means of respond-
ing to emergency situations. However, it is usually difficult 
to quantify the considered attributes in crisp values due to 
ambiguity, incompleteness, and uncertainty of the criterion 
information. To this end, fuzzy sets (FSs) were introduced to 
tackle multi criteria group decision making (MCGDM) and 
have become one of the most effective tools for quantifica-
tion of the considered criteria/attributes. So far, many gen-
eralization of fuzzy sets (Zadeh 1965), such as intuitionistic 
FS (IFS) (Atanassov 1986), Pythagorean FS (PyFS) (Yager 
2013), picture FS (PFS) (Cuong and Kreinovich 2013), and 
spherical FS (SFS) (Ashraf and Abdullah 2019a; Ashraf 

et al. 2019b), have been presented within academia. The 
SFSs, which was presented by Ashraf and Abdullah (2019a), 
is considered as one of the most recent and important type.

A SFS contains three degrees of membership grades, 
namely positive, neutral and negative, such that the square 
sum of membership grades is less than or equal to 1. For 
the aggregation of the criterion information to sort alter-
natives, traditional decision-making methods are used by 
many researcher (Ashraf et al. 2020b, c; Ashraf and Abdul-
lah 2020d; Jin et al. 2019c; Qiyas et al. 2021) to contribute 
the spherical fuzzy set theory. The algebraic aggregation 
operators (Ashraf et al. 2019b) proposed by using the alge-
braic norms to address the problem of ambiguity in decision 
making (DM). Ashraf et al. (2020a) presented Dombi norm 
based some novel aggregation operators (AOp) for spherical 
fuzzy environment. Jin et al. (2019a) introduced the logarith-
mic operational laws based novel AOp and also give brief 
study of their implementation in real world DM problems. 
Ashraf et al. (2019c) developed the DM algorithm utilizing 
distance measure of SFSs and discussed their implementa-
tions in DM. Ashraf et al. (2019d) presented the idea of the 
representation of spherical fuzzy t-norms and t-conorms and 
explained the technique of TOPSIS to deal with uncertainty 
to aggregate the criteria for sorting the alternative among 
the list of alternatives. GRA method for spherical fuzzy data 
based on linguistic SFSs are given by Ashraf et al. (2018). 
Jan et al. (2021) presented the analysis of double domina-
tion by using the concept of spherical fuzzy information and 
discussed their application in decision making problems.

It is evident that the above-mentioned AOp is focused on 
the algebraic operating laws of the SFSs for the implemen-
tation of the combination process. Algebraic product and 
sum are not only fundamental SFS operations that describe 
the union and the intersection of any two SFSs. A general 
union and intersection under SF information can be devel-
oped from a generalized norm, i.e., instances of deferent-
norms families may be used to execute the respective inter-
sections and unions under SF environment. The Einstein 
product is a good replacement of the algebraic product for 
an intersection and is capable of delivering smooth esti-
mates of the algebraic product. Equally, a good alternative 
to the algebraic sum for an intersection is the Einstein sum. 
However, there seems to be little work in the literature on 
aggregation approaches that use the Einstein operations on 
FSs and IFSs to aggregate the intuitionistic fuzzy values. 
Geometric interaction operators based on Einstein opera-
tions for IFS proposed by Garg (2016a). In (Garg 2016a, 
2017) Garg presented the Einstein aggregation operators for 
PyFS and addressed their implementations in DM problems. 
In (Rahman et al. 2019a, b, 2020) proposed the general-
ized Einstein aggregation operators for interval values PyFS 
and addressed their implementations in DM. Khan et al. 
(2019) proposed picture fuzzy Einstein aggregation (PFEA) 



2093Emergency decision support modeling under generalized spherical fuzzy Einstein aggregation…

1 3

operators and discussed their implementation (application) 
in decision making. The main aim of this paper is therefore 
to establish some AOp based on Einstein’s operational laws 
under spherical fuzzy environment.

From the above discussion we note that in many practical 
applications, various aggregation operators have been put 
forward and implemented. Although, in practical problems 
many existing AOp are not capable to address such specific 
cases. In some circumstances, many of these may result in 
unreasonable or counter-intuitive results. Certain new regu-
lations built without a simple function may have a com-
plicated description. But generalized aggregation operators 
for SFSs continue to be an open subject that attracts many 
researchers.

WHO is working with global expert networks and part-
nerships for laboratory, infection prevention and control, 
clinical management and mathematical modelling. In such 
cases, it is essential to provide an efficient way in emergency 
response for avoiding additional losses and to save the lives 
of the people. Preventive and mitigation measures play a 
vital role in both health care and community settings. In 
this research, a new way of aggregating the SF informa-
tion is built. The novel generalized spherical fuzzy Einstein 
aggregation operators are established employing Einstein 
t-norm and t-conorm. This is an attempt to propose gen-
eralized Einstein aggregation operators from a different 
perspective. We note that, generalized aggregation opera-
tors for dealing the uncertainty in practical problems using 
novel and emerging spherical fuzzy sets do not exist in the 
literature. The properties of the proposed Einstein operators 
are discussed. The performance of the proposed generalized 
Einstein aggregation operators is illustrated by the emer-
gency decision making for COVID-19, as a decision making 
problem, where the weights of the attributes are unknown. 
In this regards, spherical fuzzy entropy measure is used to 
evaluate the weight vector of the attributes.

The motivation of developed AOp is summarized as 
below. 

(1) A very difficult MCGDM problem is the estimation of 
the supreme option in spherical fuzzy environment due 
to the involvement of several imprecise factors. Assess-
ment of information in different MCGDM techniques is 
simply depicted through existing fuzzy numbers which 
may not consider all the data in a real-world problem.

(2) As a general theory, spherical fuzzy numbers describe 
efficient execution in the assessment process about 
uncertain, imprecise and vague information. Thus, 
spherical fuzzy set theory provides an excellent 
approach for the assessment of objects under multinary 
data.

(3) In view of the fact that generalized Einstein AOp 
are simple but provide a pioneering tool for solving 

MCDM problems when combine with other powerful 
mathematical tools, this article aims to develop Ein-
stein AOs in spherical fuzzy environment to handle 
complex emergency problems.

(4) The Einstein AOp employed in the construction of 
spherical fuzzy Einstein AOp are more suitable than 
all other aggregation approaches to tackle the MCGDM 
situations as developed AOp have ability to consider all 
the information within the aggregation procedure.

(5) Einstein AOp make the optimal outcomes more accu-
rate and definite when utilized in practical MCGDM 
problems under spherical fuzzy environment. However, 
the proposed AOp handle the drawbacks of AOp pre-
sent in the literature.

Therefore, some generalized SF Einstein AOp are developed 
to choose the best option in different emergency decision-
making situations like COVID-19. The developed opera-
tors have some advantages over other approaches which are 
given as below: 

(1) Our proposed methods explain the problems more 
accurately which involve multiple attributes because 
they consider spherical fuzzy numbers.

(2) The developed AOp are more precise and efficient with 
single attribute.

(3) To solve practical problems by using generalized Ein-
stein AOp with spherical fuzzy numbers is very signifi-
cant.

The contributions of this paper are mainly reflected in the 
following aspects: 

(a) To present some more advanced and generalized oper-
ational laws under spherical FSs based on Einstein 
t-norm and t-conorm.

(b) To present list of novel aggregation operators with the 
help of the defined generalized Einstein t-norm and 
t-conorm under spherical fuzzy numbers. Also, the 
several fundamental properties between the proposed 
aggregation operators are derived to show its signifi-
cance.

(c) To present a novel MAGDM technique based on the 
proposed generalized Einstein aggregation operators 
to address the group decision making problems under 
spherical fuzzy environment.

(d) The consistency and effectiveness of the proposed 
method is demonstrated through a numerical illus-
tration of emergency decision making/emergency 
response, as well as their detailed evaluations.

(e) The reliability and validity of the proposed technique 
is demonstrated with the help of sensitivity and com-
parison analysis.
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The rest of this article is organized as set out below. Sec-
tion 2 provides information concerning IFSs, FSs, PFSs, 
PyFSs, and SFSs. Section 3 describes the algebraic opera-
tions of SFSs. In Sect. 4, novel Einstein basic operational 
laws are proposed based on the Einstein norm, along with 
associated proof of its properties. The generalized AOp and 
their properties are proposed in Sect. 5, is the cornerstone 
of this work. Section 6 introduces the novel methodology 
for interacting with the ambiguity in DM problems in order 
to pick the finest alternative according to the list of attrib-
utes. Section 7 provides an overview of the evolved MCDM 
approach and a comparative analysis with some existing 
frameworks to MCDM. The article is concluded in Sect. 8 
(Table 1).

2  Preliminaries

Let’s recall the rudiments of picture FSs and spherical FSs 
in this section for a while. Upon review, these ideas will be 
used here.

Definition 1 (Cuong and Kreinovich 2013) A PFS � in fixed 
set V is described as

for each ℏ⅁ ∈ V , the positive membership �⅁ ∶ V → Θ, 
neutral membership ℸ⅁ ∶ V → Θ and the negative 
membership ñ⅁ ∶ V → Θ specifies the degree of posi-
tive, neutral and negative membership grades of the ele-
ment ℏ⅁ to the picture fuzzy set �, respectively, where 
Θ = [0, 1] (is unit interval). In addition, it is important that 
0 ≤ 𝜌⅁

(
�⅁

)
+ ℸ⅁

(
�⅁

)
+ ñ⅁

(
�⅁

)
≤ 1, for each ℏ⅁ ∈ V .

Definition 2 (Ashraf and Abdullah 2019a) A SFS � in fixed 
set V is described as

for each ℏ⅁ ∈ V , the positive membership �⅁ ∶ V → Θ, neu-
tral membership ℸ⅁ ∶ V → Θ and the negative membership 
ñ⅁ ∶ V → Θ specifies the degree of positive, neutral and 

(2.1)𝜀 =
{⟨

�⅁, 𝜌⅁
(
�⅁

)
,ℸ⅁

(
�⅁

)
, ñ⅁

(
�⅁

)⟩|�⅁ ∈ V
}
,

(2.2)𝜀 =
{⟨

�⅁, 𝜌⅁
(
�⅁

)
,ℸ⅁

(
�⅁

)
, ñ⅁

(
�⅁

)⟩|�⅁ ∈ V
}
,

negative membership grades of the element ℏ⅁ to the spheri-
cal fuzzy set �, respectively, where Θ = [0, 1] . In addition, it 
is important that 0 ≤ 𝜌2

⅁

(
�⅁

)
+ ℸ2

⅁

(
�⅁

)
+ ñ2

⅁

(
�⅁

)
≤ 1, for 

each ℏ⅁ ∈ V .
We shall signify, for convenience, the SFN by the triplet 

𝜀 =
(
𝜌⅁,ℸ⅁, ñ⅁

)
.

Let 𝜀1, 𝜀2 ∈ ŜϝŜ(V). Ashraf (Ashraf and Abdullah 2019a) 
defined the following notions:

(1) 𝜀1 ⊑ 𝜀2 if and only if 𝜌⅁1

(
�⅁

)
≤ 𝜌⅁2

(
�⅁

)
,ℸ⅁1

(
�⅁

)
≤ ℸ⅁2

(
�⅁

) 
and ñ⅁1

(
�⅁

)
≥ ñ⅁2

(
�⅁

)
 for each ℏ⅁ ∈ V . Clearly �1 = �2 if 

𝜀1 ⊑ 𝜀2 and 𝜀2 ⊑ 𝜀1.

(2) 𝜀1 ⊓ 𝜀2 =
{
min

(
𝜌⅁1

, 𝜌⅁2

)
, min

(
ℸ⅁1

,ℸ⅁2

)
, max

(
ñ⅁1

, ñ⅁2

)}
,

(3) 𝜀1 ⊔ 𝜀2 =
{
max

(
𝜌⅁1

, 𝜌⅁2

)
, min

(
ℸ⅁1

,ℸ⅁2

)
, min

(
ñ⅁1

, ñ⅁2

)}
,

(4) 𝜀c
1
=
{
ñ⅁1

,ℸ⅁1
, 𝜌⅁1

}
, where 𝜀1, 𝜀2 ∈ ŜϝŜ(V).

Definition 3 (Ashraf and Abdullah 2019a) Let 
𝜀1 =

{
𝜌⅁1

,ℸ⅁1
, ñ⅁1

}
 and 𝜀2 =

{
𝜌⅁2

,ℸ⅁2
, ñ⅁2

}
∈ ŜϝN(V) with 

Ψ > 0. Then, the operational rules are as follows:

(1) 𝜀1 ⊗ 𝜀2 =
{
𝜌⅁1

𝜌⅁2
,ℸ⅁1

ℸ⅁2
,
√

ñ2
⅁1

+ ñ2
⅁2

− ñ2
⅁1
ñ2
⅁2

}
;

(2) 𝜀1 ⊕ 𝜀2 =
{√

𝜌2
⅁1

+ 𝜌2
⅁2

− 𝜌2
⅁1
𝜌2
⅁2
,ℸ⅁1

ℸ⅁2
, ñ⅁1

ñ⅁2

}
;

(3) 𝜀Ψ
1
=

{(
𝜌⅁1

)Ψ
,
(
ℸ⅁1

)Ψ
,

√
1 −

(
1 − ñ2

⅁1

)Ψ

}
;

(4) Ψ ⋅ 𝜀1 =

{√
1 −

(
1 − 𝜌2

⅁1

)Ψ

,
(
ℸ⅁1

)Ψ
,
(
ñ⅁1

)Ψ
}

.

3  Spherical fuzzy Einstein operators

In this segment, we shall be familiarized with generalized 
union and intersection for the spherical fuzzy numbers, 
which are as follows:

We can also write:

𝜀1 ∨ 𝜀2 =
{
T
(
𝜌⅁1

, 𝜌⅁2

)
, S
(
ℸ⅁1

,ℸ⅁2

)
, S
(
ñ⅁1

, ñ⅁2

)}
,

𝜀1 ∧ 𝜀2 =
{
S
(
𝜌⅁1

, 𝜌⅁2

)
, S
(
ℸ⅁1

,ℸ⅁2

)
, T

(
ñ⅁1

, ñ⅁2

)}
.

Table 1  List of abbreviation Abbreviation Description Abbreviation Description

COVID-19 Coronavirus disease MCGDM Multi criteria group decision making
DMPs Decision making problems WHO World Health Organization
FSs Fuzzy sets IFSs Intuitionistic fuzzy sets
PyFSs Pythagorean fuzzy sets PFSs Picture fuzzy sets
SFSs Spherical fuzzy sets DM Decision making
AOp Aggregation operators PPE Personal protective equipment
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In above equations, T and S represent the t-norm and s-norm 
respectively. As, we know that, t-norm (T) and s-norm (S) 
are the general terms including all types of operators and 
also contented the necessitate of conjunction and disjunction 
operators, respectively. Here, we enlist some types of t-norm 
and s-norm in the Table 2:

However, algebraic sum and algebraic product are 
obtained using algebraic norm. Algebraic operators can not 
be only norm operator which used to perform union and 
intersection. We have many families of norm operators, 
which can be used to perform corresponding union and 
intersection. Einstein t-norm and Einstein s-norm are one 
of the effective family member of norm operators. Einstein 
sum and product are suitable replacements, respectively, giv-
ing the same smooth approximation as the algebraic product 
and the sum. Einstein t-norm and s-norm for spherical fuzzy 
environment as follows:

Where Ťe(d, l) and ŜE(d, l) are said to be Einstein t-norm and 
Einstein s-norm respectively. Also Ťe(d, l) satisfies the basic 
properties as follows:

For unite interval � = [0, 1], the mapping Ω ∶ � × � → � 
is said to be t-norm iff 

(1) Ω is commutative, monotonic and associative,
(2) Ω(d, 1) = d.

and
For unite interval � = [0, 1], the mapping Ω ∶ � × � → � 

is said to be s-norm iff 

(1) Ω is commutative, monotonic and associative,
(2) Ω(d, 0) = d.

𝜀1 ∨ 𝜀2 =
{
max

(
𝜌⅁1

, 𝜌⅁2

)
, min

(
ℸ⅁1

,ℸ⅁2

)
, min

(
ñ⅁1

, ñ⅁2

)}
,

𝜀1 ∧ 𝜀2 =
{
min

(
𝜌⅁1

, 𝜌⅁2

)
, min

(
ℸ⅁1

,ℸ⅁2

)
, max

(
ñ⅁1

, ñ⅁2

)}
.

Einstein t-norm Einstein s-norm

Ťe(d, l) =
dl√

1+(1−d2)⋅(1−l2)
�SE(d, l) =

√
d2+l2√
1+d2⋅l2

D e f i n i t i o n  4  L e t  𝜀1 =
{
𝜌⅁1

,ℸ⅁1
, ñ⅁1

}
 a n d 

𝜀2 =
{
𝜌⅁2

,ℸ⅁2
, ñ⅁2

}
∈ ŜϝN(V) and Ψ ≥ 0 . Then the Ein-

stein operations for spherical fuzzy numbers are follows as: 

(1) 𝜀1 ⊕ 𝜀2 =

⎛⎜⎜⎜⎝

�
𝜌2
⅁1

+𝜌2
⅁2�

1+𝜌2
⅁1

⋅𝜌2
⅁2

,
ℸ⅁1

⋅ℸ⅁2�
1+

�
1−ℸ2

⅁1

�
⋅

�
1−ℸ2

⅁2

� ,
ñ⅁1

⋅ñ⅁2�
1+

�
1−ñ2

⅁1

�
⋅

�
1−ñ2

⅁2

�

⎞⎟⎟⎟⎠
;

(2) 𝜀1 ⊗ 𝜀2 =

⎛⎜⎜⎜⎝

𝜌⅁1
⋅𝜌⅁2�

1+

�
1−𝜌2

⅁1

�
⋅

�
1−𝜌2

⅁2

� ,
ℸ⅁1

⋅ℸ⅁2�
1+

�
1−ℸ2

⅁1

�
⋅

�
1−ℸ2

⅁2

� ,

�
ñ
2
⅁1

+ñ2
⅁2�

1+ñ2
⅁1

⋅ñ
2
⅁2

⎞⎟⎟⎟⎠
;

(3) 
Ψ ⋅ 𝜀1 =

⎛
⎜⎜⎝

��
1+𝜌2

⅁1

�Ψ

−

�
1−𝜌2

⅁1

�Ψ

��
1+𝜌2

⅁1

�Ψ

+

�
1−𝜌2

⅁1

�Ψ
,

√
2

�
ℸ⅁1

�Ψ

��
2−ℸ2

⅁1

�Ψ

+

�
ℸ2

⅁1

�Ψ
,

√
2

�
ñ⅁1

�Ψ

��
2−ñ2

⅁1

�Ψ

+

�
ñ
2

⅁1

�Ψ

⎞
⎟⎟⎠
;

(4) 𝜀Ψ
1
=

⎛⎜⎜⎜⎝

√
2

�
𝜌⅁1

�Ψ
��

2−𝜌2
⅁1

�Ψ
+

�
𝜌2
⅁1

�Ψ ,

√
2

�
ℸ⅁1

�Ψ
��

2−ℸ2
⅁1

�Ψ
+

�
ℸ2
⅁1

�Ψ ,

��
1+ñ2

⅁1

�Ψ
−

�
1−ñ2

⅁1

�Ψ

��
1+ñ2

⅁1

�Ψ
+

�
1−ñ2

⅁1

�Ψ

⎞⎟⎟⎟⎠
;

3.1  Comparison technique for spherical fuzzy sets

In this subsection, we define the score and accuracy values 
of the spherical fuzzy sets (SFSs). On the basis of score and 
accuracy values, we can find that which spherical fuzzy set 
is better than other one.

Definition 5 (Ashraf and Abdullah 2019a) Let 
𝜀g =

{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) (g ∈ ℕ) . Then 

(a) šč(𝜀g) =
1

3
(2 + 𝜌⅁g

− ℸ⅁g
− ñ⅁g

) ∈ [0, 1] is called score.
(b) ãč(𝜀g) =

(
𝜌⅁g

− ñ⅁g

)
∈ [0, 1] is called the accuracy.

Definition 6 (Ashraf and Abdullah 2019a) Let 
𝜀1 =

{
𝜌⅁1

,ℸ⅁1
, ñ⅁1

}
 and 𝜀2 =

{
𝜌⅁2

,ℸ⅁2
, ñ⅁2

}
∈ ŜϝN(V). 

Then 

(1) If šč(𝜀1) < šč(𝜀2), then 𝜀1 < 𝜀2,

(2) If šč(𝜀1) > šč(𝜀2), then 𝜀1 > 𝜀2,

(3) If šč(𝜀1) = šč(𝜀2), then
(a) ãč(𝜀1) < ãč(𝜀2), then 𝜀1 < 𝜀2,

(b) ãč(𝜀1) > ãč(𝜀2), then 𝜀1 > 𝜀2,

(c) ãč(𝜀1) = ãč(𝜀2), then �1 = �2.

Table 2  Different types of 
t-norm and s-norm

Name t-norm s-norm

Algebraic Ť
a
(d, l) = dl Ŝ

A
(d, l) = d + l − dl

Einstein Ť
e
(d, l) =

dl

1+(1−d)(1−l)
Ŝ
E
(d, l) =

d+l

1+dl

Hamacher Ť
h
(d, l) =

dl

𝛾+(1−𝛾)(d+l−dl)
, 𝛾 > 0 �S

H
(d, l) =

d+l−dl−(1−𝛾)dl

1−(1−𝛾)dl
, 𝛾 > 0

Frank
Ť
f
(d, l) = log𝛾

(
1 +

(𝛾d−1)(𝛾 l−1)
𝛾−1

)
Ŝ
F
(d, l) = 1 − log�

(
1 +

(�1−d−1)(�1−l−1)
�−1

)



2096 S. Ashraf et al.

1 3

4  Spherical fuzzy Einstein aggregation 
(SFEA) operators

In this section, we propose the novel aggregation operators 
based on Spherical Einstein t-norm and Spherical Einstein 
s-norm under spherical fuzzy environments.

4.1  Generalized Einstein averaging aggregation 
operators

In this part of the section, we propose the Einstein weighted 
averaging and ordered weighted averaging aggregation oper-
ators under spherical fuzzy environments.

Definition 7 Consider 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) 

(g ∈ ℕ) . Then the Einstein averaging aggregation operator 
for ŜϝN(V) is denoted by SFEWA and defined as follows:

where the weights of �g(g ∈ ℕ) with �g ≥ 0, 
∑ñ

g=1
𝜅g = 1 is 

�g(g ∈ ℕ).

Theorem 1 Suppose 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) (g ∈ ℕ) 

and weight vectors of �g(g ∈ ℕ) be 𝜅 =
(
𝜅1, 𝜅2,… , 𝜅ñ

)T 

related to limit 
ñ∑

g=1

𝜅ℸ = 1. Then the operator of the SFEWA 

is a mapping of the Gñ
⟶ G such that

Proof By using Mathematical induction on ñ to prove the 
Equation (4.2).

When ñ = 2,

(4.1)SFEWA
(
𝜀1, 𝜀2,… , 𝜀ñ

)
=

ñ∑
g=1

𝜅g𝜀g,

(4.2)

SFEWA
�
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

�

=

ñ�
g=1

𝜅g𝜀g

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
ñ∏

g=1

�
1+𝜌2

⅁g

�𝜅g
−

ñ∏
g=1

�
1−𝜌2

⅁g

�𝜅g

�
ñ∏

g=1

�
1+𝜌2

⅁g

�𝜅g
+

ñ∏
g=1

�
1−𝜌2

⅁g

�𝜅g

,

√
2

ñ∏
g=1

�
ℸ⅁g

�𝜅g

�
ñ∏

g=1

�
2−ℸ2

⅁g

�𝜅g
+

ñ∏
g=1

�
ℸ2
⅁g

�𝜅g

,

√
2

ñ∏
g=1

�
ñ⅁g

�𝜅g

�
ñ∏

g=1

�
2−ñ2

⅁g

�𝜅g
+

ñ∏
g=1

�
ñ2
⅁g

�𝜅g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

According to Definition 4, we have

Then,

Thus the Equation (4.2), is true for ñ = 2.

Suppose that Equation 4.2, is true for ñ = z, we have

SFEWA
(
�1, �2

)
=

2∑
g=1

�g�g

=�1�1 + �2�2

𝜅1 ⋅ 𝜀1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

��
1+𝜌2

⅁1

�𝜅1
−

�
1−𝜌2

⅁1

�𝜅1

��
1+𝜌2

⅁1

�𝜅1
+

�
1−𝜌2

⅁1

�𝜅1
,

√
2
�
ℸ⅁1

�𝜅1

��
2−ℸ2

⅁1

�𝜅1
+

�
ℸ2
⅁1

�𝜅1
,

√
2
�
ñ⅁1

�𝜅1

��
2−ñ2

⅁1

�𝜅1
+

�
ñ2
⅁1

�𝜅1

⎞
⎟⎟⎟⎟⎟⎟⎠

𝜅2 ⋅ 𝜀2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

��
1+𝜌2

⅁2

�𝜅2
−

�
1−𝜌2

⅁2

�𝜅2

��
1+𝜌2

⅁2

�𝜅2
+

�
1−𝜌2

⅁2

�𝜅2
,

√
2
�
ℸ⅁2

�𝜅2

��
2−ℸ2

⅁2

�𝜅2
+

�
ℸ2
⅁2

�𝜅2
,

√
2
�
ñ⅁2

�𝜅2

��
2−ñ2

⅁2

�𝜅2
+

�
ñ2
⅁2

�𝜅2

⎞
⎟⎟⎟⎟⎟⎟⎠

SFEWA
�
𝜀1, 𝜀2

�
= 𝜅1𝜀1 + 𝜅2𝜀2

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�����
�
1+𝜌2

⅁1

�𝜅1
−

�
1−𝜌2

⅁1

�𝜅1

�
1+𝜌2

⅁1

�𝜅1
+

�
1−𝜌2

⅁1

�𝜅1
+

�
1+𝜌2

⅁2

�𝜅2
−

�
1−𝜌2

⅁2

�𝜅2
�
1+𝜌2

⅁2

�𝜅2
+

�
1−𝜌2

⅁2

�𝜅2
�����1+

�
1+𝜌2

⅁1

�𝜅1
−

�
1−𝜌2

⅁1

�𝜅1

�
1+𝜌2

⅁1

�𝜅1
+

�
1−𝜌2

⅁1

�𝜅1
⋅

�
1+𝜌2

⅁2

�𝜅2
−

�
1−𝜌2

⅁2

�𝜅2

�
1+𝜌2

⅁2

�𝜅2
+

�
1−𝜌2

⅁2

�𝜅2

,

√
2(ℸ⅁1 )

𝜅1

��
2−ℸ2

⅁1

�𝜅1
+

�
ℸ2
⅁1

�𝜅1
⋅

√
2(ℸ⅁2 )

𝜅2

��
2−ℸ2

⅁2

�𝜅2
+

�
ℸ2
⅁2

�𝜅2

�������1+

⎛⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝

√
2(ℸ⅁1 )

𝜅1

��
2−ℸ2

⅁1

�𝜅1
+

�
ℸ2
⅁1

�𝜅1

⎞⎟⎟⎟⎠

2⎞⎟⎟⎟⎠
⋅

⎛⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝

√
2(ℸ⅁2)

𝜅2

��
2−ℸ2

⅁2

�𝜅2
+

�
ℸ2
⅁2

�𝜅2

⎞⎟⎟⎟⎠

2⎞⎟⎟⎟⎠

,

√
2(ñ⅁1)

𝜅1

��
2−ñ2

⅁1

�𝜅1
+

�
ñ2
⅁1

�𝜅1
⋅

√
2(ñ⅁2)

𝜅2

��
2−ñ2

⅁2

�𝜅2
+

�
ñ2
⅁2

�𝜅2

�������1+

⎛⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝

√
2(ñ⅁1)

𝜅1

��
2−ñ2

⅁1

�𝜅1
+

�
ñ2
⅁1

�𝜅1

⎞⎟⎟⎟⎠

2⎞⎟⎟⎟⎠
⋅

⎛⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝

√
2(ñ⅁2 )

𝜅2

��
2−ñ2

⅁2

�𝜅2
+

�
ñ2
⅁2

�𝜅2

⎞⎟⎟⎟⎠

2⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

��
1+𝜌2

⅁1

�𝜅1
⋅

�
1+𝜌2

⅁2

�𝜅2
−

�
1−𝜌2

⅁1

�𝜅1
⋅

�
1−𝜌2

⅁2

�𝜅2

�
1+𝜌2

⅁1

�𝜅1
⋅

�
1+𝜌2

⅁2

�𝜅2
+

�
1−𝜌2

⅁1

�𝜅1
⋅

�
1−𝜌2

⅁2

�𝜅2 ,

√
2
�
ℸ⅁1

.ℸ⅁2

�
��

2−ℸ2
⅁1

�𝜅1
.
�
2−ℸ2

⅁2

�𝜅2
+

�
ℸ2
⅁1

�𝜅1
.
�
ℸ2
⅁2

�𝜅2
,

√
2
�
ñ⅁1

.ñ⅁2

�
��

2−ñ2
⅁1

�𝜅1
.
�
2−ñ2

⅁2

�𝜅2
+

�
ñ2
⅁1

�𝜅1
.
�
ñ2
⅁2

�𝜅2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Next we have to prove that Equation (4.2) is true for 
ñ = z + 1. For this we have

Hence Equation (4.2) is true for ñ = z + 1. Therefore, by the 
principal of mathematical induction the result is true for all 
ñ.   ◻

The following properties of SFEWA operator can be 
proved using definitons.

SFEWA
�
𝜀1, 𝜀2, 𝜀3,… , 𝜀z

�
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
z∏

g=1

�
1+𝜌2

⅁g

�𝜅g
−

z∏
g=1

�
1−𝜌2

⅁g

�𝜅g

�
z∏

g=1

�
1+𝜌2

⅁g

�𝜅g
+

z∏
g=1

�
1−𝜌2

⅁g

�𝜅g

,

√
2

z∏
g=1

�
ℸ⅁g

�𝜅g

�
z∏

g=1

�
2−ℸ2

⅁g

�𝜅g
+

z∏
g=1

�
ℸ2
⅁g

�𝜅g

,

√
2

z∏
g=1

�
ñ⅁g

�𝜅g

�
z∏

g=1

�
2−ñ2

⅁g

�𝜅g
+

z∏
g=1

�
ñ2
⅁g

�𝜅g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

SFEWA
�
𝜀1, 𝜀2, 𝜀3,… , 𝜀z, 𝜀z+1

�

=

z�
g=1

𝜅g𝜀g + 𝜅z+1𝜀z+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
z∏

g=1

�
1+𝜌2

⅁g

�𝜅g
−

z∏
g=1

�
1−𝜌2

⅁g

�𝜅g

�
z∏

g=1

�
1+𝜌2

⅁g

�𝜅g
+

z∏
g=1

�
1−𝜌2

⅁g

�𝜅g

,

√
2

z∏
g=1

�
ℸ⅁g

�𝜅g

�
z∏

g=1

�
2−ℸ2

⅁g

�𝜅g
+

z∏
g=1

�
ℸ2
⅁g

�𝜅g

,

√
2

z∏
g=1

�
ñ⅁g

�𝜅g

�
z∏

g=1

�
2−ñ2

⅁g

�𝜅g
+

z∏
g=1

�
ñ2
⅁g

�𝜅g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

��
1+𝜌2

𝜎z+1

�𝜅z+1
−

�
1−𝜌2

𝜎z+1

�𝜅z+1

��
1+𝜌2

𝜎z+1

�𝜅z+1
+

�
1−𝜌2

𝜎z+1

�𝜅z+1
,

√
2
�
ℸ𝜎z+1

�𝜅z+1

��
2−ℸ2

𝜎z+1

�𝜅z+1
+

�
ℸ2
𝜎z+1

�𝜅z+1
,

√
2
�
ñ𝜎z+1

�𝜅z+1

��
2−ñ2

𝜎z+1

�𝜅z+1
+

�
ñ2
𝜎z+1

�𝜅z+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
z+1∏
g=1

�
1+𝜌2

⅁g

�𝜅g
−

z+1∏
g=1

�
1−𝜌2

⅁g

�𝜅g

�
z+1∏
g=1

�
1+𝜌2

⅁g

�𝜅g
+

z+1∏
g=1

�
1−𝜌2

⅁g

�𝜅g

,

√
2
z+1∏
g=1

�
ℸ⅁g

�𝜅g

�
z+1∏
g=1

�
2−ℸ2

⅁g

�𝜅g
+

z+1∏
g=1

�
ℸ2
⅁g

�𝜅g

,

√
2
z+1∏
g=1

�
ñ⅁g

�𝜅g

�
z+1∏
g=1

�
2−ñ2

⅁g

�𝜅g
+

z+1∏
g=1

�
ñ2
⅁g

�𝜅g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Theorem  2  1)  Let  𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) 

(g = 1, 2, 3,… , ñ) ,  if  𝜀1 = 𝜀2 = ⋯ 𝜀ñ−1 = 𝜀ñ = 𝜀 ,  then 
SFEWA

(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
= 𝜀.

2) Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) (g = 1, 2, 3,… , ñ) 

a n d  �− = min
g

�g  ,  �+ = max
g

�g  .  T h e n , 
𝜀− ≤ SFEWA

(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
≤ 𝜀+.

3) Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 and 𝜀�g =

{
𝜌𝜎�g ,ℸ𝜎�g

, ñ𝜎�g

}
 

∈ ŜϝN(V) 
(
g, g̃ ∈ ℕ

)
 i.e. �g ≤ �g̃ for all g. Then

D e f i n i t i o n  8  L e t  𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) 

(g = 1, 2, 3,… , ñ) . Then the Generalized Einstein averaging 
aggregation operator for ŜϝN(V) is denoted by GSFEWA and 
defined as follows:

where the weights of �g (g ∈ ℕ) with �g ≥ 0 , 
∑ñ

g=1
𝜅g = 1 

is �g(g ∈ ℕ).

Theorem 3 Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) (g ∈ ℕ) and 

weights of �g(g ∈ ℕ) subject to ∑ñ

g=1
𝜅
g
= 1

 be denoted by 

𝜅 =
(
𝜅1, 𝜅2,… , 𝜅ñ

)T
. The GSFEWA operator is a mapping 

Gñ
⟶ G such that

SFEWA
(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
≤ SFEWA

(
𝜀�1, 𝜀�2, 𝜀�3,… , 𝜀�̃n

)
.

(4.3)GSFEWA
(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
=

(
ñ∑

g=1

𝜅g𝜀
Υ
g

) 1

Υ

,
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Proof Using Definition (4), we have

(4.4)

GSFEWA

�
𝜀1, 𝜀2, 𝜀3,… , 𝜀

ñ

�

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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ñ
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g
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g
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g
� 1

Υ

�������������

�∏
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g
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g
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ñ
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g
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−
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𝜌2
⅁
g

�Υ
�𝜅
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� 1

Υ
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ñ
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⅁
g
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�
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�𝜅
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ñ
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��
2 − 𝜌2
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ñ

g=1

��
1 + ñ
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2

⅁
g

�Υ

+ 3

�
1 − ñ
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ñ

g=1

��
1 + ñ
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1+ñ2

⅁g

�Υ
+

�
1−ñ2
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ñ∏

g=1

��
2−𝜌2

⅁g

�Υ

−

�
𝜌2
⅁g

�Υ
�𝜅g

,

�
2

ñ∏
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ñ∏
g=1

�
�cg
�𝜅g

,

�
2

ñ∏
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ñ∏
g=1

�
�ag

�𝜅g
+

ñ∏
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ñ∏
g=1

�
�eg

�𝜅g

⎞⎟⎟⎟⎟⎟⎠

1
Υ

−

⎛⎜⎜⎜⎜⎜⎝

1−

2

ñ∏
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ñ∏
g=1

�
�bg

�𝜅g
� 1

Υ

,

������2

�
ñ∏
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By back substitution, we have

 Hence, proved.   ◻

In procedure of aggregating the spherical fuzzy informa-
tion parameter Υ plays the vital role. When we fixed the 
parameter to special number, then the GSFEWA operator 
can be reduced. Like, when we take Υ = 1 , GSFEWA opera-
tor is reduced to SFEWA.

The following properties of GSFEWA operator can be sim-
ply proved.
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ñ∏

g=1

��
1 + ñ2
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�

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
ñ∏
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�
1−𝜌2

⅁g

�𝜅g

�
ñ∏

g=1

�
1+𝜌2

⅁g

�𝜅g
+

ñ∏
g=1

�
1−𝜌2

⅁g

�𝜅g

,

√
2

ñ∏
g=1

�
ℸ⅁g

�𝜅g

�
ñ∏

g=1

�
2−ℸ2

⅁g

�𝜅g
+

ñ∏
g=1

�
ℸ2
⅁g

�𝜅g

,

√
2

ñ∏
g=1

�
ñ⅁g

�𝜅g

�
ñ∏

g=1

�
2−ñ2

⅁g

�𝜅g
+

ñ∏
g=1

�
ñ2
⅁g

�𝜅g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Theorem  4  1)  Let  𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) 

(g = 1, 2, 3,… , ñ) ,  if  𝜀1 = 𝜀2 = ⋯ 𝜀ñ−1 = 𝜀ñ = 𝜀 ,  then 
GSFEWA

(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
= 𝜀.

2) Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) (g = 1, 2, 3,… , ñ) 

and �− = min
g

�g , �+ = max
g

�g . Then, �− ≤ GSFEWA
(
�1, �2,

𝜀3,… , 𝜀
ñ

)
≤ 𝜀+.

3) Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 and 𝜀�g =

{
𝜌𝜎�g ,ℸ𝜎�g

, ñ𝜎�g

}
 

∈ ŜϝN(V) 
(
g, g̃ ∈ ℕ

)
 such that �g ≤ �g̃ for all g. Then

D e f i n i t i o n  9  L e t  𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) 

(g = 1, 2, 3,… , ñ) . Then, the Generalized Einstein ordered 
averaging aggregation operator for ŜϝN(V) is denoted by 
GSFEOWA and defined as follows:

GSFEWA
(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
≤ GSFEWA

(
𝜀�1, 𝜀�2, 𝜀�3,… , 𝜀�̃n

)
.

(4.5)GSFEOWA
(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
=

(
ñ∑

g=1

𝜅g𝜀
Υ
Ω(g)

) 1

Υ

,
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where weights of �g (g ∈ ℕ), with �g ≥ 0 , 
∑ñ

g=1
𝜅g = 1 are 

�g(g ∈ ℕ). Where Υ is the real number greater than zero, Ω 
∶ (1, 2,… , ñ)− → (1, 2,… , ñ) , SFN �Ω(g) is the gth largest 
of SFN �g.

T h e o r e m   5  L e t  𝜀g =
{
𝜌⅁g

(
�⅁

)
,ℸ⅁g

(
�⅁

)
, ñ⅁g

(
�⅁

)}
 

∈ ŜϝN(V) (g ∈ ℕ) and weights of �g(g ∈ ℕ) subject to 
ñ∑

g=1

𝜅g = 1 be 𝜅 =
(
𝜅1, 𝜅2,… , 𝜅ñ

)T
. The GSFEOWA operator 

i s  a  m a p p i n g  Gñ
⟶ G  s u c h  t h a t 

GSFEOWA
(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
=

Proof The proof of this theorem is similar to that of Theo-
rem 3 and hence it is omitted here.   ◻

4.2  Generalized Einstein geometric aggregation 
operators

In this part of the section, we propose the Einstein weighted 
geometric and ordered weighted geometric aggregation 
operators under SF environments.

Definition 10 Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) (g ∈ ℕ) . 

Then, the Einstein weighted geometric aggregation operator 

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�����2

�
∏ñ

g=1

��
2−𝜌2

⅁Ω(g)

�Υ

+3

�
𝜌2
⅁Ω(g)

�Υ
�𝜅g

−
∏ñ

g=1

��
2−𝜌2

⅁Ω(g)

�Υ

−

�
𝜌2
⅁Ω(g)

�Υ
�𝜅g

� 1
Υ

��������������

�∏ñ

g=1

��
2 − 𝜌2

⅁Ω(g)

�Υ

+ 3
�
𝜌2
⅁Ω(g)

�Υ
�𝜅g

+ 3
∏ñ

g=1

��
2 − 𝜌2

⅁Ω(g)

�Υ

−

�
𝜌2
⅁Ω(g)

�Υ
�𝜅g

� 1

Υ

+

�∏ñ

g=1

��
2 − 𝜌2

⅁Ω(g)

�Υ

+ 3
�
𝜌2
⅁Ω(g)

�Υ
�𝜅g

−
∏ñ

g=1

��
2 − 𝜌2

⅁Ω(g)

�Υ

−

�
𝜌2
⅁Ω(g)

�Υ
�𝜅g

� 1

Υ

,

��������
2

��
∏ñ

g=1

�
ℸ2
⅁Ω(g)

�Υ
�𝜅g

� 1
Υ

��
∏ñ

g=1

�
2−ℸ2

⅁Ω(g)

�Υ
�𝜅g

� 1
Υ

+

��
∏ñ

g=1

�
ℸ2
⅁Ω(g)

�Υ
�𝜅g

� 1
Υ

,

���������������������

�∏ñ

g=1

��
1 + ñ2

⅁Ω(g)

�Υ

+ 3
�
1 − ñ2

⅁Ω(g)

�Υ
�𝜅g

+ 3
∏ñ

g=1

��
1 + ñ2

⅁Ω(g)

�Υ

−

�
1 − ñ2

⅁Ω(g)

�Υ
�𝜅g

� 1

Υ

−

�∏ñ

g=1

��
1 + ñ2

⅁Ω(g)

�Υ

+ 3
�
1 − ñ2

⅁Ω(g)

�Υ
�𝜅g

−
∏ñ

g=1

��
1 + ñ2

⅁Ω(g)

�Υ

−

�
1 − ñ2

⅁Ω(g)

�Υ
�𝜅g

� 1

Υ

�∏ñ

g=1

��
1 + ñ2

⅁Ω(g)

�Υ

+ 3
�
1 − ñ2

⅁Ω(g)

�Υ
�𝜅g

+ 3
∏ñ

g=1

��
1 + ñ2

⅁Ω(g)

�Υ

−

�
1 − ñ2

⅁Ω(g)

�Υ
�𝜅g

� 1

Υ

+

�∏ñ

g=1

��
1 + ñ2

⅁Ω(g)

�Υ

+ 3
�
1 − ñ2

⅁Ω(g)

�Υ
�𝜅g

−
∏ñ

g=1

��
1 + ñ2

⅁Ω(g)

�Υ

−

�
1 − ñ2

⅁Ω(g)

�Υ
�𝜅g

� 1

Υ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for ŜϝN(V) is represented by SFEWG and defined as 
follows:

where weights of �g (g ∈ ℕ) with �g ≥ 0 , 
∑ñ

g=1
𝜅g = 1 is 

�g(g ∈ ℕ).

Theorem 6 Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) (g ∈ ℕ) and 

weights of �g(g ∈ ℕ) subject to ∑ñ

g=1
𝜅ℸ = 1

 be denoted by 

𝜅 =
(
𝜅1, 𝜅2,… , 𝜅ñ

)T
. The SFEWG operator is a mapping 

Gñ
⟶ G such that

(4.6)SFEWG
(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
=

ñ∏
g=1

(
𝜀g
)𝜅g ,
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Proof By using Mathematical induction on ñ to prove the 
Equation 4.7 .

When ñ = 2,

According to Definition 4, we have

Then,

(4.7)

SFEWG
�
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

�
=

ñ�
g=1

�
𝜀g
�𝜅g

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2

ñ∏
g=1

�
𝜌⅁g

�𝜅g

�
ñ∏

g=1

�
2−𝜌2

⅁g

�𝜅g
+

ñ∏
g=1

�
P2⅁g

�𝜅g

,

√
2

ñ∏
g=1

�
ℸ⅁g

�𝜅g

�
ñ∏

g=1

�
2−ℸ2

⅁g

�𝜅g
+

ñ∏
g=1

�
ℸ2
⅁g

�𝜅g

,

�
ñ∏

g=1

�
1+ñ2

⅁g

�𝜅g
−

ñ∏
g=1

�
1−ñ2

⅁g

�𝜅g

�
ñ∏

g=1

�
1+ñ2

⅁g

�𝜅g
+

ñ∏
g=1

�
1−ñ2

⅁g

�𝜅g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

SFEWG
(
�1, �2

)
=

2∏
g=1

(
�g
)�g

=
(
�1
)�1 + (

�2
)�2

�
𝜀1
�𝜅1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2
�
𝜌⅁1

�𝜅1

��
2−𝜌2

⅁1

�𝜅1
+

�
𝜌2
⅁1

�𝜅1
,

√
2
�
ℸ⅁1

�𝜅1

��
2−ℸ2

⅁1

�𝜅1
+

�
ℸ2
⅁1

�𝜅1
,

��
1+ñ2

⅁1

�𝜅1
−

�
1−ñ2

⅁1

�𝜅1

��
1+ñ2

⅁1

�𝜅1
+

�
1−ñ2

⅁1

�𝜅1

⎞⎟⎟⎟⎟⎟⎟⎠

�
𝜀2
�𝜅2 =

⎛⎜⎜⎜⎜⎜⎜⎝

√
2
�
𝜌⅁2

�𝜅2

��
2−𝜌2

⅁2

�𝜅2
+

�
𝜌2
⅁2

�𝜅2
,

√
2
�
ℸ⅁2

�𝜅2

��
2−ℸ2

⅁2

�𝜅2
+

�
ℸ2
⅁2

�𝜅2
,

��
1+ñ2

⅁2

�𝜅2
−

�
1−ñ2

⅁2

�𝜅2

��
1+ñ2

⅁2

�𝜅2
+

�
1−ñ2

⅁2

�𝜅2

⎞⎟⎟⎟⎟⎟⎟⎠

Thus, Equation 4.7, is true for ñ = 2.

Assume Equation 4.7, for ñ = z is true, we have

Then, we have to prove Equation 4.7 for ñ = z + 1 is true, 
for this we have

SFEWG
�
𝜀1, 𝜀2

�

=
�
𝜀1
�𝜅1 + �

𝜀2
�𝜅2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2(𝜌⅁1)

𝜅1

��
2−𝜌2

⅁1

�𝜅1
+

�
𝜌2
⅁1

�𝜅1
⋅

√
2(𝜌⅁2)

𝜅2

��
2−𝜌2

⅁2

�𝜅2
+

�
𝜌2
⅁2

�𝜅2

�������1+

⎛⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝

√
2(𝜌⅁1)

𝜅1

��
2−𝜌2

⅁1

�𝜅1
+

�
𝜌2
⅁1

�𝜅1

⎞
⎟⎟⎟⎠

2⎞
⎟⎟⎟⎠
⋅

⎛⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝

√
2(𝜌⅁2)

𝜅2

��
2−𝜌2

⅁2

�𝜅2
+

�
𝜌2
⅁2

�𝜅2

⎞
⎟⎟⎟⎠

2⎞
⎟⎟⎟⎠

,

√
2(ℸ⅁1 )

𝜅1

��
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⅁1

�𝜅1
+

�
ℸ2
⅁1

�𝜅1
⋅

√
2(ℸ⅁2 )

𝜅2

��
2−ℸ2
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�𝜅2
+

�
ℸ2
⅁2

�𝜅2

�������1+

⎛
⎜⎜⎜⎝
1−

⎛⎜⎜⎜⎝

√
2(ℸ⅁1 )

𝜅1

��
2−ℸ2

⅁1

�𝜅1
+

�
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�𝜅1

⎞⎟⎟⎟⎠

2⎞⎟⎟⎟⎠
⋅
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⎛⎜⎜⎜⎝
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�
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�
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�
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�𝜅1
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�
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1−ñ2

⅁1

�𝜅1
�
1+ñ2
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�
1+ñ2

⅁2

�𝜅2
−

�
1−ñ2
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SFEWG
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that is, when ñ = z + 1 , Equation 4.7 also holds.
Hence, Equation 4.7 holds for any ñ . The proof is com-

pleted.   ◻

The following properties of SFEWG operator can be sim-
ply proved.

SFEWG
�
𝜀1, 𝜀2, 𝜀3,… , 𝜀z, 𝜀z+1
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1−ñ2

⅁g

�𝜅g

�
z∏

g=1

�
1+ñ2
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�𝜅z+1
,

��
1+ñ2

𝜎z+1

�𝜅z+1
−

�
1−ñ2

𝜎z+1

�𝜅z+1

��
1+ñ2

𝜎z+1

�𝜅z+1
+

�
1−ñ2

𝜎z+1

�𝜅z+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2
z+1∏
g=1

�
𝜌⅁g

�𝜅g

�
z+1∏
g=1

�
2−𝜌2

⅁g

�𝜅g
+

z+1∏
g=1

�
𝜌2
⅁g

�𝜅g

,

√
2
z+1∏
g=1

�
ℸ⅁g

�𝜅g

�
z+1∏
g=1

�
2−ℸ2

⅁g

�𝜅g
+

z+1∏
g=1

�
ℸ2
⅁g

�𝜅g

,

�
z+1∏
g=1

�
1+ñ2

⅁g

�𝜅g
−

z+1∏
g=1

�
1−ñ2

⅁g

�𝜅g

�
z+1∏
g=1

�
1+ñ2

⅁g

�𝜅g
+

z+1∏
g=1

�
1−ñ2

⅁g

�𝜅g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Theorem  7  1)  Let  𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) 

(g = 1, 2, 3,… , ñ) ,  if  𝜀1 = 𝜀2 = ⋯ 𝜀ñ−1 = 𝜀ñ = 𝜀 ,  then 
SFEWG

(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
= 𝜀.

2) Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) (g = 1, 2, 3,… , ñ) 

a n d  �− = min
g

�g  ,  �+ = max
g

�g  .  T h e n , 
𝜀− ≤ SFEWG

(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
≤ 𝜀+.

3) Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 and 𝜀�g =

{
𝜌𝜎�g ,ℸ𝜎�g

, ñ𝜎�g

}
 

∈ ŜϝN(V) 
(
g, g̃ ∈ ℕ

)
 such that �g ≤ �g̃ for all g. Then

D e f i n i t i o n  1 1  L e t  𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) 

(g = 1, 2, 3,… , ñ) . Then, the Generalized Einstein geometric 
aggregation operator for ŜϝN(V) is denoted by GSFEWG and 
defined as follows:

where weights of �g (g ∈ ℕ) with �g ≥ 0 , 
∑ñ

g=1
𝜅g = 1 is 

�g(g ∈ ℕ), and Υ ≥ 0.

Theorem 8 Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) (g ∈ ℕ) and 

weights of �g(g ∈ ℕ) subject to ∑ñ

g=1
𝜅
g
= 1

 with Υ ≥ 0 be 

denoted by 𝜅 =
(
𝜅1, 𝜅2,… , 𝜅ñ

)T
. The GSFEWG operator is 

a mapping Gñ
⟶ G such that

SFEWG
(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
≤ SFEWG

(
𝜀�1, 𝜀�2, 𝜀�3,… , 𝜀�̃n

)
.

(4.8)GSFEWG
(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
=

1

Υ

(
ñ∏

g=1

(
Υ ⋅ 𝜀g

)𝜅g
)
,
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1 3

Proof Since, form Definition 4 we have

(4.9)

GSFEWG
�
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

�

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

���������������������

�∏ñ

g=1

��
1 + 𝜌2

⅁g

�Υ

+ 3
�
1 − 𝜌2

⅁g

�Υ
�𝜅g

+ 3
∏ñ

g=1

��
1 + 𝜌2

⅁g

�Υ

−

�
1 − 𝜌2

⅁g

�Υ
�𝜅g

� 1

Υ

−

�∏ñ

g=1

��
1 + 𝜌2

⅁g

�Υ

+ 3
�
1 − 𝜌2

⅁g

�Υ
�𝜅g

−
∏ñ

g=1

��
1 + 𝜌2

⅁g

�Υ

−

�
1 − 𝜌2

⅁g

�Υ
�𝜅g

� 1

Υ

�∏ñ

g=1

��
1 + 𝜌2

⅁g

�Υ

+ 3
�
1 − 𝜌2

⅁g

�Υ
�𝜅g

+ 3
∏ñ

g=1

��
1 + 𝜌2

⅁g

�Υ

−

�
1 − 𝜌2

⅁g

�Υ
�𝜅g

� 1

Υ

+

�∏ñ

g=1

��
1 + 𝜌2

⅁g

�Υ

+ 3
�
1 − 𝜌2

⅁g

�Υ
�𝜅g

−
∏ñ

g=1

��
1 + 𝜌2

⅁g

�Υ

−

�
1 − 𝜌2

⅁g

�Υ
�𝜅g

� 1

Υ

,

�������
2

��∏ñ

g=1

�
ℸ2
⅁g

�Υ
�𝜅g

� 1
Υ

��∏ñ

g=1

�
2−ℸ2

⅁g

�Υ
�𝜅g

� 1
Υ

+

��∏ñ

g=1

�
ℸ2
⅁g

�Υ
�𝜅g

� 1
Υ

,

����
2

�∏ñ

g=1

��
2−ñ2

⅁g

�Υ

+3
�
ñ2
⅁g

�Υ
�𝜅g

−
∏ñ

g=1

��
2−ñ2

⅁g

�Υ

−

�
ñ2
⅁g

�Υ
�𝜅g

� 1
Υ

��������������

�∏ñ

g=1

��
2 − ñ2

⅁g

�Υ

+ 3
�
ñ2
⅁g

�Υ
�𝜅g

+ 3
∏ñ

g=1

��
2 − ñ2

⅁g

�Υ

−

�
ñ2
⅁g

�Υ
�𝜅g

� 1

Υ

+

�∏ñ

g=1

��
2 − ñ2

⅁g

�Υ

+ 3
�
ñ2
⅁g

�Υ
�𝜅g

−
∏ñ

g=1

��
2 − ñ2

⅁g

�Υ

−

�
ñ2
⅁g

�Υ
�𝜅g

� 1

Υ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Suppose that

Υ ⋅ 𝜀
g

=

⎛⎜⎜⎜⎜⎝

��
1 + 𝜌2

⅁
g

�Υ

−

�
1 − 𝜌2

⅁
g

�Υ

��
1 + 𝜌2

⅁
g

�Υ

+

�
1 − 𝜌2

⅁
g

�Υ
,

√
2

�
ℸ⅁

g

�Υ

��
2 − ℸ2

⅁
g

�Υ

+

�
ℸ2

⅁
g

�Υ
,

√
2

�
ñ⅁

g

�Υ

��
2 − ñ

2

⅁
g

�Υ

+

�
ñ
2

⅁
g

�Υ

⎞⎟⎟⎟⎟⎠

⇒

ñ�
g=1

�
Υ ⋅ 𝜀

g

�𝜅
g

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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2

ñ∏
g=1

⎛
⎜⎜⎜⎜⎝

��
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⅁
g
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−

�
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⅁
g

�Υ

��
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⅁
g

�Υ

+

�
1−𝜌2

⅁
g

�Υ

⎞
⎟⎟⎟⎟⎠

𝜅
g

��������
ñ∏

g=1

⎛
⎜⎜⎜⎝
2−

�
1+𝜌2

⅁
g

�Υ

−

�
1−𝜌2

⅁
g

�Υ

�
1+𝜌2

⅁
g

�Υ

+

�
1−𝜌2

⅁
g

�Υ

⎞
⎟⎟⎟⎠

𝜅
g

+
ñ∏

g=1

⎛
⎜⎜⎜⎝

�
1+𝜌2

⅁
g

�Υ

−

�
1−𝜌2

⅁
g

�Υ

�
1+𝜌2

⅁
g

�Υ

+

�
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⅁
g

�Υ

⎞
⎟⎟⎟⎠

𝜅
g

,

��������2

ñ∏
g=1

⎛⎜⎜⎜⎝

2

�
ℸ2
⅁
g

�Υ

�
2−ℸ2

⅁
g

�Υ

+

�
ℸ2
⅁
g

�Υ

⎞⎟⎟⎟⎠

𝜅
g

��������
ñ∏

g=1

⎛⎜⎜⎜⎝
2−

2

�
ℸ2
⅁
g

�Υ

�
2−ℸ2

⅁
g

�Υ

+

�
ℸ2
⅁
g

�Υ

⎞⎟⎟⎟⎠

𝜅
g

+
ñ∏

g=1

⎛⎜⎜⎜⎝

2

�
ℸ2
⅁
g

�Υ

�
2−ℸ2

⅁
g

�Υ

+

�
ℸ2
⅁
g

�Υ

⎞⎟⎟⎟⎠

𝜅
g

,

��������
ñ∏

g=1

⎛⎜⎜⎜⎝
1+

2

�
ñ
2
⅁
g

�Υ

�
2−ñ2

⅁
g

�Υ
+

�
ñ
2
⅁
g

�Υ

⎞⎟⎟⎟⎠

𝜅
g

−
ñ∏

g=1

⎛⎜⎜⎜⎝
1−

2

�
ñ
2
⅁
g

�Υ

�
2−ñ2

⅁
g

�Υ

+

�
ñ
2
⅁
g

�Υ

⎞⎟⎟⎟⎠

𝜅
g

��������
ñ∏

g=1

⎛⎜⎜⎜⎝
1+

2

�
ñ
2
⅁
g

�Υ

�
2−ñ2

⅁
g

�Υ
+

�
ñ
2
⅁
g

�Υ

⎞⎟⎟⎟⎠

𝜅
g

+
ñ∏

g=1

⎛⎜⎜⎜⎝
1−

2

�
ñ
2
⅁
g

�Υ

�
2−ñ2

⅁
g

�Υ

+

�
ñ
2
⅁
g

�Υ

⎞⎟⎟⎟⎠

𝜅
g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

����2

ñ∏
g=1

��
1+𝜌2

⅁
g

�Υ

−

�
1−𝜌2

⅁
g

�Υ
�𝜅

g

���� ñ∏
g=1

��
1+𝜌2

⅁
g

�Υ

+3

�
1−𝜌2

⅁
g

�Υ
�𝜅

g

+
ñ∏

g=1
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1+𝜌2

⅁
g

�Υ

−

�
1−𝜌2

⅁
g

�Υ
�𝜅

g

,

����2

ñ∏
g=1
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⅁
g
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�𝜅

g

���� ñ∏
g=1
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2−ℸ2

⅁
g

�Υ
�𝜅

g

+
ñ∏

g=1

��
ℸ2
⅁
g

�Υ
�𝜅

g

,

���� ñ∏
g=1

��
2−ñ2

⅁
g

�Υ

+3

�
ñ
2

⅁
g

�Υ
�𝜅

g

−
ñ∏

g=1
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2−ñ2

⅁
g

�Υ

−

�
ñ
2

⅁
g

�Υ
�𝜅

g

���� ñ∏
g=1

��
2−ñ2

⅁
g

�Υ

+3

�
ñ
2

⅁
g

�Υ
�𝜅

g

+
ñ∏

g=1

��
2−ñ2

⅁
g

�Υ

−

�
ñ
2

⅁
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�Υ
�𝜅

g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

 Therefore,

By back substitution, we have

�a
g
=

�
1 + 𝜌2

⅁g

�Υ

−

�
1 − 𝜌2

⅁g

�Υ

, �b
g
=

�
1 + 𝜌2

⅁g

�Υ

+ 3

�
1 − 𝜌2

⅁g

�Υ

,

�c
g
=

�
ℸ2

⅁g

�Υ

, �d
g
=

�
2 − ℸ2

⅁g

�Υ

,

�e
g
=

�
2 − ñ2
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�
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, �f
g
=
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2 − ñ2
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−

�
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.

⇒

ñ�
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=
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ñ∏
g=1

�
�a
g

�𝜅g

�
ñ∏
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ñ∏
g=1
(�cg)

𝜅g

ñ∏
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Fig. 1  Algorithm flow chart
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Table 3  Expert-1 information
f1 f2 f3 f4

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.84, 0.34, 0.40) (0.43, 0.39, 0.78) (0.67, 0.50, 0.30) (0.31, 0.21, 0.71)

(0.60, 0.11, 0.53) (0.23, 0.35, 0.59) (0.72, 0.31, 0.41) (0.11, 0.25, 0.82)

(0.79, 0.19, 0.39) (0.11, 0.21, 0.91) (0.71, 0.41, 0.13) (0.34, 0.25, 0.51)

(0.63, 0.51, 0.13) (0.49, 0.33, 0.42) (0.61, 0.43, 0.45) (0.49, 0.37, 0.59)

(0.57, 0.36, 0.29) (0.50, 0.15, 0.60) (0.70, 0.32, 0.40) (0.33, 0.44, 0.65)

⎞⎟⎟⎟⎟⎠

Table 4  Expert-2 information
f1 f2 f3 f4

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.61, 0.15, 0.53) (0.16, 0.35, 0.62) (0.61, 0.35, 0.47) (0.55, 0.17, 0.74)

(0.66, 0.11, 0.51) (0.43, 0.23, 0.77) (0.93, 0.08, 0.09) (0.02, 0.06, 0.99)

(0.88, 0.09, 0.07) (0.05, 0.06, 0.89) (0.56, 0.17, 0.44) (0.43, 0.13, 0.61)

(0.59, 0.32, 0.34) (0.24, 0.48, 0.51) (0.68, 0.53, 0.39) (0.34, 0.21, 0.61)

(0.71, 0.31, 0.24) (0.35, 0.41, 0.69) (0.73, 0.44, 0.21) (0.22, 0.49, 0.74)

⎞⎟⎟⎟⎟⎠

Table 5  Expert-3 information
f1 f2 f3 f4

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.85, 0.25.0.15) (0.14, 0.23, 0.88) (0.78, 0.38, 0.18) (0.29, 0.39, 0.83)

(0.94, 0.04, 0.07) (0.39, 0.19, 0.61) (0.63, 0.18, 0.35) (0.48, 0.49, 0.56)

(0.73, 0.13, 0.46) (0.19, 0.39, 0.88) (0.87, 0.35, 0.18) (0.41, 0.13, 0.81)

(0.82, 0.12, 0.43) (0.55, 0.21, 0.63) (0.53, 0.33, 0.47) (0.46, 0.23, 0.51)

(0.61, 0.33, 0.29) (0.28, 0.41, 0.63) (0.74, 0.34, 0.14) (0.37, 0.32, 0.65)

⎞⎟⎟⎟⎟⎠

Table 6  Expert-1 normalized 
information

f1 f2 f3 f4

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.84, 0.34, 0.40) (0.78, 0.39, 0.43) (0.67, 0.50, 0.30) (0.71, 0.21, 0.31)

(0.60, 0.11, 0.53) (0.59, 0.35, 0.23) (0.72, 0.31, 0.41) (0.82, 0.25, 0.11)

(0.79, 0.19, 0.39) (0.91, 0.21, 0.11) (0.71, 0.41, 0.13) (0.51, 0.25, 0.34)

(0.63, 0.51, 0.13) (0.42, 0.33, 0.49) (0.61, 0.43, 0.45) (0.59, 0.37, 0.49)

(0.57, 0.36, 0.29) (0.60, 0.15, 0.50) (0.70, 0.32, 0.40) (0.65, 0.44, 0.33)

⎞⎟⎟⎟⎟⎠

Table 7  Expert-2 normalized 
information

f1 f2 f3 f4

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.61, 0.15, 0.53) (0.62, 0.35, 0.16) (0.61, 0.35, 0.47) (0.74, 0.17, 0.55)

(0.66, 0.11, 0.51) (0.77, 0.23, 0.43) (0.93, 0.08, 0.09) (0.99, 0.06, 0.02)

(0.88, 0.09, 0.07) (0.89, 0.06, 0.05) (0.56, 0.17, 0.44) (0.61, 0.13, 0.43)

(0.59, 0.32, 0.34) (0.51, 0.48, 0.24) (0.68, 0.53, 0.39) (0.61, 0.21, 0.34)

(0.71, 0.31, 0.24) (0.69, 0.41, 0.35) (0.73, 0.44, 0.21) (0.74, 0.49, 0.22)

⎞⎟⎟⎟⎟⎠
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Table 8  Expert-3 normalized 
information

f1 f2 f3 f4

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.85, 0.25.0.15) (0.88, 0.23, 0.14) (0.78, 0.38, 0.18) (0.83, 0.39, 0.29)

(0.94, 0.04, 0.07) (0.61, 0.19, 0.39) (0.63, 0.18, 0.35) (0.56, 0.49, 0.48)

(0.73, 0.13, 0.46) (0.88, 0.39, 0.19) (0.87, 0.35, 0.18) (0.81, 0.13, 0.41)

(0.82, 0.12, 0.43) (0.63, 0.21, 0.55) (0.53, 0.33, 0.47) (0.51, 0.23, 0.46)

(0.61, 0.33, 0.29) (0.63, 0.41, 0.28) (0.74, 0.34, 0.14) (0.65, 0.32, 0.37)

⎞⎟⎟⎟⎟⎠

Table 9  Aggregated SF 
information

f1 f2 f3 f4

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.788, 0.229, 0.319) (0.785, 0.315, 0.208) (0.696, 0.402, 0.297) (0.767, 0.239, 0.371)

(0.807, 0.078, 0.279) (0.674, 0.246, 0.342) (0.818, 0.160, 0.227) (0.919, 0.188, 0.097)

(0.814, 0.128, 0.223) (0.893, 0.165, 0.099) (0.748, 0.284, 0.223) (0.677, 0.159, 0.393)

(0.702, 0.267, 0.271) (0.533, 0.324, 0.395) (0.615, 0.424, 0.433) (0.573, 0.258, 0.421)

(0.639, 0.331, 0.271) (0.644, 0.298, 0.363) (0.724, 0.365, 0.224) (0.685, 0.411, 0.296)

⎞⎟⎟⎟⎟⎠

Table 10  Aggregate using 
SFEWA operator

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.3094, 0.7936, 0.0979)

(0.3264, 0.7120, 0.0247)

(0.3192, 0.7261, 0.0214)

(0.2635, 0.8043, 0.1795)

(0.2834, 0.8195, 0.0879)

⎞⎟⎟⎟⎟⎠

Table 11  Aggregate using SFEWG

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.60005, 0.79366, 0.14615)

(0.66340, 0.71208, 0.12277)

(0.63264, 0.72614, 0.12485)

(0.41620, 0.80431, 0.18010)

(0.49192, 0.81953, 0.14080)

⎞⎟⎟⎟⎟⎠

Table 12  Aggregate using GSFEWA

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.44445, 0.79575, 0.11129)

(0.46454, 0.71761, 0.06174)

(0.45682, 0.72979, 0.05963)

(0.38654, 0.80591, 0.17035)

(0.41154, 0.82002, 0.10427)

⎞⎟⎟⎟⎟⎠

Table 13  Aggregate using GSFEWG

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.56223, 0.79575, 0.21632)

(0.60791, 0.71761, 0.18988)

(0.58129, 0.72979, 0.20267)

(0.37139, 0.80591, 0.26558)

(0.44870, 0.82002, 0.20767)

⎞⎟⎟⎟⎟⎠

Table 14  Aggregate using GSFEOWA

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.444296, 0.795641, 0.110545)

(0.464678, 0.716829, 0.061479)

(0.457115, 0.729603, 0.059262)

(0.386712, 0.805925, 0.170465)

(0.412008, 0.820026, 0.103837)

⎞⎟⎟⎟⎟⎠

Table 15  Aggregate using GSFEOWG

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.56141, 0.79564, 0.21541)

(0.60776, 0.71682, 0.18982)

(0.58205, 0.72960, 0.20252)

(0.37184, 0.80592, 0.26572)

(0.44997, 0.82002, 0.20715)

⎞⎟⎟⎟⎟⎠
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ñ∏

g=1

��
1 + 𝜌2

⅁
g

�Υ

−

�
1 − 𝜌2

⅁
g

�Υ
�𝜅

g

−
ñ∏
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Table 16  Score and ranking of 
SFNs

Operators Score Ranking

šč

(
S1

)
šč

(
S2

)
šč

(
S3

)
šč

(
S4

)
šč

(
S5

)

SFEWA 0.472 0.529 0.523 0.426 0.458 S2 > S3 > S1 > S5 > S4

SFEWG 0.553 0.609 0.593 0.477 0.510 S2 > S3 > S1 > S5 > S4

GSFEWA 0.512 0.561 0.555 0.470 0.495 S2 > S3 > S1 > S5 > S4

GSFEWG 0.516 0.566 0.549 0.433 0.473 S2 > S3 > S1 > S5 > S4

GSFEOWA 0.512 0.562 0.556 0.470 0.496 S2 > S3 > S1 > S5 > S4

GSFEOWG 0.516 0.567 0.549 0.433 0.474 S2 > S3 > S1 > S5 > S4

 Hence, proved.   ◻

In procedure of aggregating the spherical fuzzy informa-
tion parameter Υ plays the vital role. When we fixed the 
parameter to special number, then the GSFEWG operator 
can be reduced. Like, when we take Υ = 1 , GSFEWG opera-
tor is reduced to SFEWG.

The following properties of GSFEWG operator can be sim-
ply proved.
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�
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ñ∏
g=1

�
1−ñ2
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Theorem  9  1)  Let  𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) 

(g = 1, 2, 3,… , ñ) ,  if  𝜀1 = 𝜀2 = ⋯ 𝜀ñ−1 = 𝜀ñ = 𝜀 ,  then 
GSFEWG

(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
= 𝜀.

2) Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) (g = 1, 2, 3,… , ñ) 

a n d  �− = min
g

�g  ,  �+ = max
g

�g  .  T h e n , 
𝜀− ≤ GSFEWG

(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
≤ 𝜀+.

3) Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 and 𝜀�g =

{
𝜌𝜎�g ,ℸ𝜎�g

, ñ𝜎�g

}
 

∈ ŜϝN(V) 
(
g, g̃ ∈ ℕ

)
 such that �g ≤ �g̃ for all g. Then

Table 17  Sensitivity analysis on 
the different values of parameter 
Υ

Υ Operators Score Ranking

šč

(
S1

)
šč

(
S2

)
šč

(
S3

)
šč

(
S4

)
šč

(
S5

)

→ 0.2 GSFEWA 0.546 0.630 0.626 0.471 0.543 (2, 3, 1, 5, 4)

GSFEWG 0.628 0.687 0.668 0.521 0.565
GSFEOWA 0.546 0.629 0.626 0.471 0.543
GSFEOWG 0.628 0.687 0.669 0.521 0.565

→ 1 GSFEWA 0.472 0.529 0.523 0.426 0.458 (2, 3, 1, 5, 4)

GSFEWG 0.553 0.609 0.593 0.477 0.510
GSFEOWA 0.472 0.529 0.524 0.426 0.458
GSFEOWG 0.553 0.609 0.594 0.477 0.511

→ 2 GSFEWA 0.512 0.561 0.555 0.470 0.495 (2, 3, 1, 5, 4)

GSFEWG 0.516 0.566 0.549 0.433 0.473
GSFEOWA 0.512 0.562 0.556 0.470 0.496
GSFEOWG 0.516 0.567 0.549 0.433 0.474

→ 5 GSFEWA 0.551 0.596 0.590 0.512 0.533 (2, 3, 1, 5, 4)

GSFEWG 0.485 0.518 0.499 0.395 0.444
GSFEOWA 0.552 0.597 0.591 0.512 0.533
GSFEOWG 0.485 0.518 0.499 0.395 0.444

→ 10 GSFEWA 0.566 0.612 0.604 0.531 0.550 (2, 3, 1, 5, 4)

GSFEWG 0.464 0.488 0.470 0.376 0.429
GSFEOWA 0.567 0.613 0.605 0.532 0.550
GSFEOWG 0.465 0.489 0.470 0.377 0.429

→ 15 GSFEWA 0.571 0.617 0.609 0.539 0.557 (2, 3, 1, 5, 4)

GSFEWG 0.562 0.577 0.571 0.368 0.528
GSFEOWA 0.573 0.618 0.609 0.540 0.557
GSFEOWG 0.562 0.577 0.571 0.368 0.529

→ 30 GSFEWA 0.578 0.624 0.615 0.548 0.564 (2, 3, 1, 5, 4)

GSFEWG 0.553 0.568 0.561 0.486 0.524
GSFEOWA 0.579 0.625 0.615 0.550 0.565
GSFEOWG 0.554 0.568 0.561 0.487 0.525

Table 18  Aggregated SF 
information matrix

f1 f2 f3 f4

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.788, 0.229, 0.319) (0.785, 0.315, 0.208) (0.696, 0.402, 0.297) (0.767, 0.239, 0.371)

(0.807, 0.078, 0.279) (0.674, 0.246, 0.342) (0.818, 0.160, 0.227) (0.919, 0.188, 0.097)

(0.814, 0.128, 0.223) (0.893, 0.165, 0.099) (0.748, 0.284, 0.223) (0.677, 0.159, 0.393)

(0.702, 0.267, 0.271) (0.533, 0.324, 0.395) (0.615, 0.424, 0.433) (0.573, 0.258, 0.421)

(0.639, 0.331, 0.271) (0.644, 0.298, 0.363) (0.724, 0.365, 0.224) (0.685, 0.411, 0.296)

⎞⎟⎟⎟⎟⎠

D e f i n i t i o n  1 2  L e t  𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) 

(g = 1, 2, 3,… , ñ) . Then, the Generalized Einstein ordered 
geometric aggregation operator for ŜϝN(V) is denoted by 
GSFEOWG and defined as follows:

GSFEWG
(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
≤ GSFEWG

(
𝜀�1, 𝜀�2, 𝜀�3,… , 𝜀�̃n

)
.

(4.10)

GSFEOWG
(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
=

1

Υ
⋅

(
ñ∏

g=1

(
Υ.𝜀Ω(g)

)𝜅g
)
,
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Table 19  Score and ranking of SFNs

Log. Aggregation Operators 
(Jin et al. 2019a)

Score Ranking

šč

(
S1

)
šč

(
S2

)
šč

(
S3

)
šč

(
S4

)
šč

(
S5

)

L-SFWA 0.982 0.998 0.984 0.737 0.934 S2 > S3 > S1 > S5 > S4

L-SFOWA 0.980 0.993 0.987 0.613 0.903 S2 > S3 > S1 > S5 > S4

L-SFHWA 0.9995 0.9999 0.9997 0.646 0.984 S2 > S3 > S1 > S5 > S4

L-SFWG 0.979 0.995 0.972 0.622 0.926 S2 > S1 > S3 > S5 > S4

L-SFOWG 0.976 0.979 0.973 0.330 0.892 S2 > S1 > S3 > S5 > S4

L-SFHWG 0.9998 0.9999 0.9991 0.822 0.998 S2 > S1 > S3 > S5 > S4

Proposed Einstein Aggregation 
Operators

Score Ranking

šč

(
S1

)
šč

(
S2

)
šč

(
S3

)
šč

(
S4

)
šč

(
S5

)

SFEWA 0.472 0.529 0.523 0.426 0.458 S2 > S3 > S1 > S5 > S4

SFEWG 0.553 0.609 0.593 0.477 0.510 S2 > S3 > S1 > S5 > S4

GSFEWA 0.512 0.561 0.555 0.470 0.495 S2 > S3 > S1 > S5 > S4

GSFEWG 0.516 0.566 0.549 0.433 0.473 S2 > S3 > S1 > S5 > S4

GSFEOWA 0.512 0.562 0.556 0.470 0.496 S2 > S3 > S1 > S5 > S4

GSFEOWG 0.516 0.567 0.549 0.433 0.474 S2 > S3 > S1 > S5 > S4

Table 20  Aggregated SF 
information matrix

f1 f2 f3

S1

S2

S3

S4

⎛⎜⎜⎜⎝

(0.658, 0.427, 0.294) (0.574, 0.361, 0.339) (0.492, 0.548, 0.436)

(0.733, 0.489, 0.290) (0.452, 0.677, 0.249) (0.658, 0.307, 0.499)

(0.388, 0.663, 0.441) (0.684, 0.276, 0.273) (0.443, 0.266, 0.670)

(0.765, 0.332, 0.443) (0.571, 0.564, 0.367) (0.314, 0.349, 0.632)

⎞⎟⎟⎟⎠

Table 21  Score and ranking of SFNs

Algebraic Aggregation Operators ( Ashraf 
and Abdullah 2019a)

Score Ranking

šč

(
S1

)
šč

(
S2

)
šč

(
S3

)
šč

(
S4

)

textitSFWA 0.982 0.998 0.984 0.737 S2 > S3 > S1 > S4

SFOWA 0.980 0.993 0.987 0.613 S2 > S3 > S1 > S4

SFHWA 0.9995 0.9999 0.9997 0.646 S2 > S3 > S1 > S4

SFWG 0.979 0.995 0.972 0.622 S2 > S1 > S3 > S4

SFOWG 0.976 0.979 0.973 0.330 S2 > S1 > S3 > S4

SFHWG 0.9998 0.9999 0.9991 0.822 S2 > S1 > S3 > S4

Proposed Einstein Aggregation Operators Score Ranking

šč

(
S1

)
šč

(
S2

)
šč

(
S3

)
šč

(
S4

)

SFEWA 0.465 0.474 0.416 0.4294 S2 > S1 > S4 > S3

SFEWG 0.429 0.453 0.375 0.407 S2 > S1 > S4 > S3

GSFEWA 0.490 0.498 0.445 0.466 S2 > S1 > S4 > S3

GSFEWG 0.401 0.414 0.335 0.360 S2 > S1 > S4 > S3

Table 22  Spherical fuzzy 
information D1 (Barukab et al. 
2019)

f1 f2 f3 f4

S1

S2

S3

S4

S5

⎛
⎜⎜⎜⎜⎝

(0.84, 0.34, 0.40) (0.43, 0.39, 0.78) (0.67, 0.50, 0.30) (0.31, 0.21, 0.71)

(0.60, 0.11, 0.53) (0.23, 0.35, 0.59) (0.72, 0.31, 0.41) (0.11, 0.25, 0.82)

(0.79, 0.19, 0.39) (0.11, 0.21, 0.91) (0.71, 0.41, 0.13) (0.34, 0.25, 0.51)

(0.63, 0.51, 0.13) (0.49, 0.33, 0.42) (0.61, 0.43, 0.45) (0.49, 0.37, 0.59)

(0.57, 0.36, 0.29) (0.50, 0.15, 0.60) (0.70, 0.32, 0.40) (0.33, 0.44, 0.65)

⎞
⎟⎟⎟⎟⎠
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Table 23  Spherical fuzzy 
information D2 (Barukab et al. 
2019)

f1 f2 f3 f4

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.61, 0.15, 0.53) (0.16, 0.35, 0.62) (0.61, 0.35, 0.47) (0.55, 0.17, 0.74)

(0.66, 0.11, 0.51) (0.43, 0.23, 0.77) (0.93, 0.08, 0.09) (0.02, 0.06, 0.99)

(0.88, 0.09, 0.07) (0.05, 0.06, 0.89) (0.56, 0.17, 0.44) (0.43, 0.13, 0.61)

(0.59, 0.32, 0.34) (0.24, 0.48, 0.51) (0.68, 0.53, 0.39) (0.34, 0.21, 0.61)

(0.71, 0.31, 0.24) (0.35, 0.41, 0.69) (0.73, 0.44, 0.21) (0.22, 0.49, 0.74)

⎞⎟⎟⎟⎟⎠

Table 24  Spherical fuzzy 
information D3 (Barukab et al. 
2019)

f1 f2 f3 f4

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.85, 0.25.0.15) (0.14, 0.23, 0.88) (0.78, 0.38, 0.18) (0.29, 0.39, 0.83)

(0.94, 0.04, 0.07) (0.39, 0.19, 0.61) (0.63, 0.18, 0.35) (0.48, 0.49, 0.56)

(0.73, 0.13, 0.46) (0.19, 0.39, 0.88) (0.87, 0.35, 0.18) (0.41, 0.13, 0.81)

(0.82, 0.12, 0.43) (0.55, 0.21, 0.63) (0.53, 0.33, 0.47) (0.46, 0.23, 0.51)

(0.61, 0.33, 0.29) (0.28, 0.41, 0.63) (0.74, 0.34, 0.14) (0.37, 0.32, 0.65)

⎞⎟⎟⎟⎟⎠

Table 25  Collected spherical 
fuzzy information (Barukab 
et al. 2019)

f1 f2 f3 f4

S1

S2

S3

S4

S5

⎛⎜⎜⎜⎜⎝

(0.79, 0.23, 0.31) (0.78, 0.31, 0.21) (0.69, 0.40, 0.29) (0.76, 0.24, 0.36)

(0.80, 0.07, 0.27) (0.67, 0.24, 0.34) (0.81, 0.16, 0.23) (0.91, 0.19, 0.10)

(0.81, 0.13, 0.23) (0.89, 0.17, 0.10) (0.75, 0.29, 0.21) (0.67, 0.16, 0.39)

(0.70, 0.26, 0.26) (0.53, 0.32, 0.40) (0.61, 0.42, 0.43) (0.57, 0.26, 0.42)

(0.63, 0.33, 0.27) (0.64, 0.29, 0.36) (0.72, 0.36, 0.22) (0.68, 0.41, 0.29)

⎞⎟⎟⎟⎟⎠

Table 26  Score and ranking of spherical fuzzy information

Final revised closeness indices Ranking

S1 S2 S3 S4 S5

TOPSIS Method (Barukab 
et al. 2019)

0.4047 0.5641 0.5908 0.2576 0.3018 S3 > S2 > S1 > S5 > S4

Proposed Einstein Aggrega-
tion Operators

Score Ranking

šč

(
S1

)
šč

(
S2

)
šč

(
S3

)
šč

(
S4

)
šč

(
S5

)

SFEWA 0.47 0.52 0.53 0.45 0.46 S3 > S2 > S1 > S5 > S4

SFEWG 0.55 0.59 0.61 0.48 0.51 S3 > S2 > S1 > S5 > S4

GSFEWA 0.51 0.55 0.56 0.47 0.49 S3 > S2 > S1 > S5 > S4

GSFEWG 0.52 0.55 0.57 0.43 0.47 S3 > S2 > S1 > S5 > S4

GSFEOWA 0.51 0.55 0.56 0.47 0.50 S3 > S2 > S1 > S5 > S4

GSFEOWG 0.51 0.55 0.57 0.43 0.47 S3 > S2 > S1 > S5 > S4

where weights of �g(g ∈ ℕ) subject to �g ≥ 0 and ∑ñ

g=1
𝜅g = 1 is �g(g ∈ ℕ). Where Υ is the real number greater 

than zero, Ω ∶ (1, 2,… , ñ)− → (1, 2,… , ñ) , SFN �Ω(g) is the 
gth largest of SFN �g.

Theorem 10 Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) (g ∈ ℕ) and 

weights of �g(g ∈ ℕ) subject to ∑ñ

g=1
𝜅
g
= 1

 be represented 

by 𝜅 =
(
𝜅1, 𝜅2,… , 𝜅ñ

)T . The GSFEOWG operator is a map-
ping Gñ

⟶ G such that
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Proof The proof of this theorem is similar to that of Theo-
rem 8 and hence it is omitted here.   ◻

The following properties of GSFEOWG operator can be 
simply proved.

Theorem  11 1)  Let  𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) 

(g = 1, 2, 3,… , ñ) ,  if  𝜀1 = 𝜀2 = ⋯ 𝜀ñ−1 = 𝜀ñ = 𝜀 ,  then 
GSFEOWG

(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
= 𝜀.

2) Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 ∈ ŜϝN(V) (g = 1, 2, 3,… , ñ) 

a n d  �− = min
g

�g  ,  �+ = max
g

�g  .  T h e n , 
𝜀− ≤ GSFEOWG

(
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

)
≤ 𝜀+.

3) Let 𝜀g =
{
𝜌⅁g

,ℸ⅁g
, ñ⅁g

}
 and 𝜀�g =

{
𝜌𝜎�g ,ℸ𝜎�g

, ñ𝜎�g

}
 

∈ ŜϝN(V) 
(
g, g̃ ∈ ℕ

)
 i.e. �g ≤ �g̃ ∀ g. Then

GSFEOWG
�
𝜀1, 𝜀2, 𝜀3,… , 𝜀ñ

�

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

���������������������

�∏ñ

g=1

��
1 + 𝜌2

⅁Ω(g)

�Υ

+ 3
�
1 − 𝜌2

⅁Ω(g)

�Υ
�𝜅g

+ 3
∏ñ

g=1

��
1 + 𝜌2

⅁Ω(g)

�Υ

−

�
1 − 𝜌2

⅁Ω(g)

�Υ
�𝜅g

� 1

Υ

−

�∏ñ

g=1

��
1 + 𝜌2

⅁Ω(g)

�Υ

+ 3
�
1 − 𝜌2

⅁Ω(g)

�Υ
�𝜅g

−
∏ñ

g=1

��
1 + 𝜌2

⅁Ω(g)

�Υ

−

�
1 − 𝜌2

⅁Ω(g)

�Υ
�𝜅g

� 1

Υ

�∏ñ

g=1

��
1 + 𝜌2

⅁Ω(g)

�Υ

+ 3
�
1 − 𝜌2

⅁Ω(g)

�Υ
�𝜅g

+ 3
∏ñ

g=1

��
1 + 𝜌2

⅁Ω(g)

�Υ

−

�
1 − 𝜌2

⅁Ω(g)

�Υ
�𝜅g

� 1

Υ

+

�∏ñ

g=1

��
1 + 𝜌2

⅁Ω(g)

�Υ

+ 3
�
1 − 𝜌2

⅁Ω(g)

�Υ
�𝜅g

−
∏ñ

g=1

��
1 + 𝜌2

⅁Ω(g)

�Υ

−

�
1 − 𝜌2

⅁Ω(g)

�Υ
�𝜅g

� 1

Υ

,

��������
2

��
∏ñ

g=1

�
ℸ2
⅁Ω(g)

�Υ
�𝜅g

� 1
Υ

��
∏ñ

g=1

�
2−ℸ2

⅁Ω(g)

�Υ
�𝜅g

� 1
Υ

+

��∏ñ

g=1

�
ℸ2
𝜛Ω(g)

�Υ
�𝜅g

� 1
Υ

,

�����2

�
∏ñ

g=1

��
2−ñ2

⅁Ω(g)

�Υ

+3

�
ñ2
⅁Ω(g)

�Υ
�𝜅g

−
∏ñ

g=1

��
2−ñ2

⅁Ω(g)

�Υ

−

�
ñ2
⅁Ω(g)

�Υ
�𝜅g

� 1
Υ

��������������

�∏ñ

g=1

��
2 − ñ2

⅁Ω(g)

�Υ

+ 3
�
ñ2
⅁Ω(g)

�Υ
�𝜅g

+ 3
∏ñ

g=1

��
2 − ñ2

⅁Ω(g)

�Υ

−

�
ñ2
⅁Ω(g)

�Υ
�𝜅g

� 1

Υ

+

�∏ñ

g=1

��
2 − ñ2

⅁Ω(g)

�Υ

+ 3
�
ñ2
⅁Ω(g)

�Υ
�𝜅g

−
∏ñ

g=1

��
2 − ñ2

⅁Ω(g)

�Υ

−

�
ñ2
⅁Ω(g)

�Υ
�𝜅g

� 1

Υ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

GSFEOWG
(
𝜀1, 𝜀2,… , 𝜀ñ

)
≤ GSFEOWG

(
𝜀�1, 𝜀�2,… , 𝜀�̃n

)
.

5  Technique of solving MAGDM problem 
based on generalized Einstein 
aggregation operators

To tackle the MAGDM problems in a SF setting, we propose 
a generalized spherical fuzzy Einstein AOp-based methodol-
ogy. MADM problems can be interpreted as a decision 
matrix (D), where columns show attributes collection and 
the alternatives are shown in the rows. Therefore, let con-
sider a set of ñ alternatives 

{
S1, S2, S3,… , Sñ

}
 for the deci-

sion matrix Dñ×m , and m attributes 
{
f1, f2, f3,… , fm

}
 . 

W =
{
�1, �2, �3,… , �m

}
 is presented the unknown weight of 

m attributes with �g ∈ [0, 1] such that ∑m

g=1
�
g
= 1.

 Supposed 

the  SF decis ion  matr ix  (D)  i s  denoted  by 
D =

�
𝜀ij
�
ñ×m

= ⟨𝜌ij,ℸij, ñij⟩ñ×m, where �ij represents the 
degree of the alternative gratifies the criteria fj considered 
by decision maker (DM), ℸij represents the degree of the 
alternative is neutral for the criteria fj considered by DM and 
ñij represents the degree of the alternative doesn’t gratify the 
criteria fj considered by DM. The following steps form the 
algorithm (Fig. 1);

Step-1  Data Collection: In the form of SF information, 
the decision maker provides the decision matri-
ces as follows 
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Step-2  Normalization Data: Normalize the Dt
ñ×m

 
matrix. There are usually two types of attrib-
utes/criteria in a MAGDM problem. They are 
benefit and cost type criteria, whose values 
have the opposite effects on decision making. 
To unify such effects, the values of cost criteria 
in Dt

ñ×m
 need to be normalized and a normalized 

matrix is obtained as follow: 

 where CI refers to “if Cj is a benefit criterion” and CII refers 
to “if Cj is a cost criterion”.
Step-3  Aggregated information: The aggregated infor-

mation of all decision-maker information is 
calculated in this step using the SFWA/SFWG 
operator, that is 

Step-4  Unknown weight vector determined using SF-
entropy measure: To determined the unknown 
weight vector of the attributes using spherical 
fuzzy entropy measure as following formula; 

Step-5  Aggregate the information using entropy weight 
vector:

Step-5(a)  Using SFEWA (operator) to combine (aggre-
gate) the SF information.

Step-5(b)  Using SFEWG to combine the SF information.

Dt
ñ×m

=

S1
S2
⋮

Sñ

⎛
⎜⎜⎜⎜⎜⎝

f1 f2 fm�
𝜌⅁11

,ℸ⅁11
, ñ⅁11

� �
𝜌⅁12

,ℸ⅁12
, ñ⅁12

�
⋯

�
𝜌⅁1m

,ℸ⅁1m
, ñ⅁1m

�
�
𝜌⅁21

,ℸ⅁21
, ñ⅁21

� �
𝜌⅁22

,ℸ⅁22
, ñ⅁22

�
⋯

�
𝜌⅁2m

,ℸ⅁2m
, ñ⅁2m

�
⋮ ⋮ ⋱ ⋮�
𝜌⅁n1

,ℸ⅁n1
, ñ⅁n1

� �
𝜌⅁n2

,ℸ⅁n2
, ñ⅁n2

�
⋯

�
𝜌⅁nm

,ℸ⅁nm
, ñ⅁nm

�

⎞
⎟⎟⎟⎟⎟⎠

(5.1)Dt
ij
=

⎧⎪⎨⎪⎩

�
𝜌⅁ij

,ℸ⅁ij
, ñ⅁ij

�
if CI�

ñ⅁ij
,ℸ⅁ij

, 𝜌⅁ij

�
if CII

SFEWA
�
𝜀1, 𝜀2,… , 𝜀ñ

�

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
ñ∏

g=1

�
1+𝜌2

⅁g

�𝜅g
−

ñ∏
g=1

�
1−𝜌2

⅁g

�𝜅g

�
ñ∏

g=1

�
1+𝜌2

⅁g

�𝜅g
+

ñ∏
g=1

�
1−𝜌2

⅁g

�𝜅g

,

√
2

ñ∏
g=1

�
ℸ⅁g

�𝜅g

�
ñ∏

g=1

�
2−ℸ2

⅁g

�𝜅g
+

ñ∏
g=1

�
ℸ2
⅁g

�𝜅g

,

√
2

ñ∏
g=1

�
ñ⅁g

�𝜅g

�
ñ∏

g=1

�
2−ñ2

⅁g

�𝜅g
+

ñ∏
g=1

�
ñ2
⅁g

�𝜅g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.2)

𝜅j =

1 +
1

ñ

ñ∑
ℸ=1

�
𝜌⅁ij

log
�
𝜌⅁ij

�
+ ℸ⅁ij

log
�
ℸ⅁ij

�
+ ñ⅁ij

log
�
ñ⅁ij

��

ñ∑
j=1

�
1 +

1

ñ

ñ∑
ℸ=1

𝜌⅁ij
log

�
𝜌⅁ij

�
+ ℸ⅁ij

log
�
ℸ⅁ij

�
+ ñ⅁ij

log
�
ñ⅁ij

��

Step-5(c)  Using GSFEWA to combine the SF information.
Step-5(d)  Using GSFEWG to combine the SF information.
Step-5(e)  Using GSFEOWA to combine the SF 

information.
Step-5(f)  Using GSFEOWG to combine the SF 

information.
Step-6  Calculate the scores values šč

(
𝜀ℸ
)
 of aggregated 

(combined) SFNs 𝜀ℸ(ℸ = 1, 2,… , ñ) and rank 
by the maximum values for the score. If the 
score values are the same for two 𝜀ℸ and �j , then 
we must take into consideration the accuracy 
degrees ãč

(
𝜀ℸ
)
 and ãč

(
𝜀j
)
, respectively, then 

we’re going to rank the maximum degree of 𝜀ℸ 
and �j.

Step-7  Choose the optimal alternative as per the high-
est score value or the accuracy degree.

6  Numerical application of the proposed 
technique

A numerical application regarding the emergency decision 
making for COVID-19 is firstly used in this section to dem-
onstrate the designed MAGDM process. Then a comparison 
is made between the proposed AOp and the existing AOp of 
SFNs to demonstrate the feature and benefit of the general-
ized Einstein AOp.

6.1  Case study

To demonstrate the applicability and validity of the pro-
posed methods, we extend a real case study about an emer-
gency caused by an outbreak of novel coronavirus disease 
(COVID-19) pandemic that occurred in China.

Actions taken by governments and organizations: The 
spread was first observed around December 2019 in Wuhan, 
Hubei, China, and reported by the World Health Organi-
zation (WHO) on March 11, 2020 as an epidemic disease. 
In early 2020, the novel coronavirus pushed the Chinese 
government to initiate the largest lockdown in human his-
tory, threatening an estimated 45 million individuals. The 
name of the "Novel Coronavirus (COVID-19)" virus was 
announced by the WHO. On January 30, 2020, the WHO 
Director-General announced that the outbreak was triggering 
a global health emergency.
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The risk that it will spread further is quite high. WHO 
defined the outbreak as a public health emergency of inter-
national concern. This disease is undoubtedly caused by 
enormous economic losses, environmental pollution, lack of 
personal protective equipment (PPE), PPE consists of respir-
atory/surgical masks, gloves, face protection. The potential 
for an expansion of the supply of EPP is limited and it is not 
possible to meet the current requirements for respirators and 
masks, especially if the widespread and improper use of EPP 
continues. The WHO collaborates with public health experts 
and laboratory partnerships, prevention and monitoring of 
diseases, clinical management and mathematical modeling.

In such a situation, it is important to provide an effec-
tive means of emergency response to prevent further losses 
and to save the lives of individuals. In both health care and 
community environments, preventive and mitigation meas-
ures are key. As a result of such an emergency decision, 
health professionals must respond immediately, rescue them 
urgently to control the situation effectively and prevent more 
fatalities. There are three decision makers to provied their 
information using spherical fuzzy information to deal the 
uncertainty in emergency response and their weights are 
(0.314, 0.355, 0.331)T .

There are five emergency alternatives to overcome the 
COVID-2019 which are given by 

(1) Control vector 
(
S1
)
;

(2) Food facility at Home, Lockdown 
(
S2
)
;

(3) Educate the People 
(
S3
)
;

(4) Disease and surveillance 
(
S4
)
;

(5) Improving nutrition 
(
S5
)
.

And also four criteria. which are given by 

(1) Space 
(
f1
)
;

(2) People 
(
f2
)
;

(3) Time 
(
f3
)
;(4) Rescue people/Test 

(
f4
)
.

Step-1  The expert evaluation results are listed in the 
Tables 3, 4 and  5:

Step-2  The attributes f1 and f3 are benefits type, f2 and 
f4 are cost attributes according to the experts. 
Normalized matrix calculated as the formula 
given 5.1, and outcomes are seen in Tables 6, 7 
and 8:

Step-3  In Table 9 aggregated SF information is calcu-
lated using the SFWA operator.

Step-4  To computed the unknown weight vector of the 
attributes using spherical fuzzy entropy meas-
ure 5.2 as follows 

Step-5(a)  Used SFEWA operator to combine (aggregate) 
the SF information as given in Table 10:

Step-5(b)  Used SFEWG operator to combine the SF infor-
mation as given in Table 11:

Step-5(c)  Used GSFEWA operator to combine the SF 
information with Υ = 2, as given in Table 12:

Step-5(d)  Used GSFEWG operator to combine the SF 
information with Υ = 2, as given in Table 13:

Step-5(e)  Used GSFEOWA operator to combine the SF 
information with Υ = 2, as given in Table 14:

Step-5(f)  Used GSFEOWG operator to combine the SF 
information with Υ = 2, as given in Table 15:

Step-6  Calculated the scores values šč
(
𝜀ℸ
)
 of com-

bined (aggregated) SFNs and ranked as fol-
lows according to the maximum score values 
in Table 16;

Step-7  Under all the suggested generalized Einstein 
aggregation operators, Machine S2 has the 
highest score value, therefore S2 (Lockdown 
and provide food facility at home) is our best 
alternative with respect to offer attributes list-
ing to tackle and prevent to novel coronavirus 
(COVID-2019).

6.2  Sensitivity analysis

In this subsection, we discuss the sensitivity analysis in 
variation of the value of the parameter Υ from 0 to 30 on 
the alternatives by using the proposed generalized Einstein 
aggregation operators to examine the distinct trends of the 
scores and ranking of the alternatives. Results obtained from 
proposed GSFEWA, GSFEWG, GSFEOWA and GSFEOWG 
aggregation operators are summarized in Table 16. These 
results obtained show the decision makers (DM,s) that they 
are able to select the values of Υ according to their prefer-
ences. If Υ = 1 , then the GSFEWA/GSFWG reduces to the 
SFEWA/SFEWG respectively. Also, it has been noted that 
Υ = 1 means that the attitude of DM,s is neutral, and it is 
transpired that the overall score values of different alternates 
are increasing with an increase in Υ . Thus the management 
meaning of Υ is that the DM’s different preferences had 
effects on the score values of alternatives, which lead to 
the different optimal alternatives. (can be seen in Table 17)

7  Comparison analysis

A comparison of the features of these proposed generalized 
Einstein aggregation operators with the designed MAGDM 
method is presented in this section to demonstrate the 

W =
{
�1 = 0.256, �2 = 0.248, �3 = 0.245, �4 = 0.251

}T
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benefits of the developed methodology. The comparison 
is provided by comparing the characteristics of the differ-
ent aggregation operators which are described in different 
methods. The logarithmic based aggregation operators were 
identified in the approach (Jin et al. 2019a). The method 
presented in (Ashraf and Abdullah 2019a) discussed the 
algebraic aggregation operators.

We give the good comparison of the proposed six Ein-
stein aggregation with existing aggregation operators pre-
sented in (Ashraf and Abdullah 2019a; Ashraf et al. 2020a; 
Jin et al. 2019a), showing the strength to handle real-life 
DMPs with uncertainty. The results are seen in below tables. 
It is explained as follows:

(1) Comparison with Jin et al. (2019a)  logarithmic 
operators

Collective SF information of (Jin et al. 2019a) is shown 
in Table 18.

The matrix for comparison after aggregation by proposed 
Einstein aggregation operators is shown in Table 19:

(2) Comparison with Ashraf and Abdullah (2019a)  
algebraic aggregation operators

Collective SF information of (Ashraf and Abdullah 
2019a) is shown in Table 20.

The matrix for comparison after aggregation by proposed 
Einstein aggregation operators is shown in Table 21:

Hence, S2 is the best alternative which is computed under 
list of attributes.

8  Comparison with TOPSIS approach

In this subsection, we propose the comparison study of the 
developed generalized Einstein aggregation opeators with 
the improved TOPSIS methodology proposed by Barukab 
et al. (2019). The spherical fuzzy information evaluted in 
Barukab et al. (2019) is given in Table 22, 23 and 24.

Collective spherical information using spherical fuzzy 
weighted averaging aggregation operator is calculated in 
Table 25:

The comparison ranking matrix after aggregation by pro-
posed Einstein aggregation operators is shown as follows in 
Table 26:

From the outcomes of the proposed operators and the 
existing improved TOPSIS methodology, we conclude that 
ranking lists obtained from both the proposed method and 
the compared methods are same. Hence, Proposed gener-
alized Einstein aggregation operators under the spherical 
fuzzy set environment is a generalized and novel approach to 
tackle uncertainty in DM problems. The proposed operators 
with the spherical fuzzy environment are a more flexible and 
effective to evaluate best alternative in real word problems.

9  Conclusion

In this paper, generalized spherical fuzzy Einstein weighted 
average, weighted geometric, ordered weighted average and 
ordered weighted geometric aggregation operators have been 
presented to aggregate the uncertainty in emergency situa-
tion of COVID-19 as a real life emergency decision mak-
ing problem. The formal definitions and properties of these 
generalized Einstein aggregation operators have been respec-
tively provided and explored. Their specific expressions are 
established via the operational laws of SFNs based on the 
Einstein t-norm and t-conorm. Based on the specific expres-
sions, a new method for solving the MAGDM problem has 
been proposed. Based on these generalized spherical fuzzy 
Einstein aggregation operators, we designed an algorithms to 
tackle emergency situation of COVID-19 effectively by the 
physicians or administrators. Validation and effectiveness of 
the proposed designed algorithm is tested over existing tech-
niques. Results shows that the proposed technique is reliable 
and effective to reduce/prevent the outbreak of COVID-19.

In future research, the other techniques of spherical FSs, 
like VIKOR, TODAM, Electric-I, II, and III with real life 
problems are investigated. Future work will also focus on 
applying the proposed method to solve practical MAGDM 
problems in manufacturing domain.

Limitation: A number of included studies were limited in 
terms data availability and methodological quality. Therefore, 
the reported findings should be interpreted cautiously within 
that context. Furthermore, our study was limited to the articles 
published in English. Considering the epicenter of COVID-
19, Chinese literature should be included in future systematic 
reviews. We will continue to monitor the literature, and this 
method will be updated when new evidence emerges.
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