Abstract
Air pollution has become a major environmental risk of the new civilized world due to its severe influence on public health and the environment. Eventually, understanding the spatiotemporal variability of air pollution at high granularity is necessary to make relevant public policies. To explore spatiotemporal variability of air pollution at high granularity we have utilized the power of IoT based participatory sensing and data science. In this paper, we propose a predictive model for spatiotemporal air pollution estimation technique called Multiview data Fusion model (MVDF) that can consider spatial as well as temporal dependencies of air pollutants. The proposed technique is evaluated based on real-world air pollution dataset collected by participants over a period of 1 year in an urban area of city Kolkata. The results show that MVDF dominates over some baselines like Simple Kriging (SK), Modified Shepard’s Method (MSM) and Nearest Neighbor (NN). Besides, in this paper, we attempt to perform visual analysis that consists of state-of-the-art visualization techniques to explore spatiotemporal variability at different granularities on the estimated pollution levels of MVDF.













Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Manuscript has associated data in a private repository. Data will be made available on reasonable request.
Notes
References
Antonić A, Marjanović M, Pripužić K, Žarko IP (2016) A mobile crowd sensing ecosystem enabled by cupus: cloud-based publish/subscribe middleware for the internet of things. Futur Gener Comput Syst 56:607–622
Capponi A, Fiandrino C, Kantarci B, Foschini L, Kliazovich D, Bouvry P (2019) A survey on mobile crowdsensing systems: challenges, solutions and opportunities. IEEE Commun Surv Tut 21(3):2419–2465
Chandra B, Middya AI, Roy S (2021) Spatio-temporal prediction of noise pollution using participatory sensing. In Advances in Intelligent Systems and Computing. Springer, Singapore, pp 597–607
Chen L, Ho Y, Lee H, Wu H, Liu H, Hsieh H, Huang Y, Lung SC (2017) An open framework for participatory pm2.5 monitoring in smart cities. IEEE Access 5:14441–14454
Cheng L, Niu J, Kong L, Luo C, Gu Y, He W, Das SK (2017) Compressive sensing based data quality improvement for crowd-sensing applications. J Netw Comput Appl 77:123–134
Das R, Middya AI, Roy S (2021) High granular and short term time series forecasting of pm2.5 air pollutant—a comparative review. In: Artificial Intelligence Review. Springer Science and Business Media LLC. https://doi.org/10.1007/s10462-021-09991-1
Dutta J, Gazi F, Roy S, Chowdhury C (2016) AirSense: opportunistic crowd-sensing based air quality monitoring system for smart city. In 2016 IEEE SENSORS. IEEE https://doi.org/10.1109/icsens.2016.7808730
Dutta J, Chowdhury C, Roy S, Middya AI, Gazi F (2017) Towards smart city. In: Proceedings of the 18th international conference on distributed computing and networking, ICDCN ’17: 18th International Conference on Distributed Computing and Networking. ACM. https://doi.org/10.1145/3007748.3018286
Egondi T, Muindi K, Kyobutungi C, Gatari M, Rocklöv J (2016) Measuring exposure levels of inhalable airborne particles (pm2. 5) in two socially deprived areas of Nairobi, Kenya. Environ Res 148:500–506
Fan H, Zhao C, Yang Y (2020) A comprehensive analysis of the spatio-temporal variation of urban air pollution in china during 2014–2018. Atmos Environ 220:117066
Gardner ES Jr (2006) Exponential smoothing: the state of the art-part II. Int J Forecast 22(4):637–666
Ghosh S, Dutta J, Roy S (2018) SenseDcity: a participatory sensing based approach. In Proceedings of the Workshop Program of the 19th International Conference on Distributed Computing and Networking. Workshops ICDCN 2018: Workshops co-located with the International Conference on Distributed Computing and Networks 2018. ACM. https://doi.org/10.1145/3170521.3170537
Gumus K, Sen A (2013) Comparison of spatial interpolation methods and multi-layer neural networks for different point distributions on a digital elevation model. Geodetski Vestnik 57:523–543
Kar D, Middya AI, Roy S (2019) An approach to detect travel patterns using smartphone sensing. In: 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). IEEE. https://doi.org/10.1109/ants47819.2019.9118073
Kumar U, Jain V (2010) Arima forecasting of ambient air pollutants (o 3, no, no 2 and co). Stoch Env Res Risk Assess 24(5):751–760
Lam NS-N (1983) Spatial interpolation methods: a review. Am Cart 10(2):129–150
Li J, Heap AD (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Eco Inform 6(3–4):228–241
Li J, Heap AD (2014) Spatial interpolation methods applied in the environmental sciences: a review. Environ Modell Softw 53:173–189
Malvić T, Ivšinović J, Velić J, Sremac J, Barudžija U (2020) Application of the modified shepard’s method (msm): a case study with the interpolation of neogene reservoir variables in northern croatia. Stats 3(1):68–83
Marjovi A, Arfire A, Martinoli A (2015) High resolution air pollution maps in urban environments using mobile sensor networks. In: 2015 International Conference on Distributed Computing in Sensor Systems. 2015 International Conference on Distributed Computing in Sensor Systems (DCOSS). IEEE. https://doi.org/10.1109/dcoss.2015.32
Mendez D, Rodriguez L, Hernandez M, Colorado J, Chacon A (2018) Monitoring air pollution by combining a static infrastructure with a participatory sensing approach: Design and performance evaluation. In: International Journal of Sustainable Development and Planning 13(04):638–652. https://doi.org/10.2495/sdp-v13-n4-638-652
Middya AI, Roy S (2021) Spatial interpolation techniques on participatory sensing data. ACM Trans Spat Algorithms Syst 7(3):1–32
Middya AI, Roy S, Dutta J, Das R (2020) JUSense: a unified framework for participatory-based urban sensing system. Mob Netw Appl 25(4):1249–1274
Middya AI, Roy S, Mandal S, Talukdar R (2021) Privacy protected user identification using deep learning for smartphone-based participatory sensing applications. In: Neural Computing and Applications. Springer Science and Business Media LLC. https://doi.org/10.1007/s00521-021-06319-6
Miller HJ (2004) Tobler’s first law and spatial analysis. Ann Assoc Am Geogr 94(2):284–289
Nath P, Saha P, Middya AI, Roy S (2021) Long-term time-series pollution forecast using statistical and deep learning methods. In Neural Computing and Applications. Springer Science and Business Media LLC. https://doi.org/10.1007/s00521-021-05901-2
Patra S, Middya AI, Roy S (2021) PotSpot: participatory sensing based monitoring system for pothole detection using deep learning. Multimed Tools Appl 80(16):25171–25195
Qiao P, Li P, Cheng Y, Wei W, Yang S, Lei M, Chen T (2019) Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites. Environ Geochem Health 41(6):2709–2730. https://doi.org/10.1007/s10653-019-00328-0
Reed P, Minsker B, Valocchi AJ (2000) Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation. Water Resour Res 36(12):3731–3741
Saračević M, Adamović S, Maček N, Elhoseny M, Sarhan S (2020a) Cryptographic keys exchange model for smart city applications. IET Intell Transp Syst 14(11):1456–1464. https://doi.org/10.1049/iet-its.2019.0855
Saračević MH, Adamovič SZ, Miškovic VA, Elhoseny M, Maček ND, Selim MM, Shankar K (2020b) Data encryption for internet of things applications based on catalan objects and two combinatorial structures. IEEE Trans Reliab 70(2):819–830. https://doi.org/10.1109/tr.2020.3010973
Shi X, Zhao C, Jiang JH, Wang C, Yang X, Yung YL (2018a) Spatial representativeness of pm2.5 concentrations obtained using observations from network stations. J Geophys Res 123(6):3145–3158
Shi X, Zhao C, Qin K, Yang Y, Zhang K, Fan H (2018b) A case study of pollution process in north china region using reanalysis meteorology. Int Arch Photogramm Remote Sen Spat Inf Sci XLII-3/W5:73–76. https://doi.org/10.5194/isprs-archives-xlii-3-w5-73-2018
Theunis J, Peters J, Elen B (2017) Participatory air quality monitoring in urban environments: reconciling technological challenges and participation. In: Participatory sensing, opinions and collective awareness. Springer, Berlin, pp 255–271
Zhang X, Liang L, Luo C, Cheng L (2018) Privacy-preserving incentive mechanisms for mobile crowdsensing. IEEE Pervasive Comput 17(3):47–57
Zhang K, Zhao C, Fan H, Yang Y, Sun Y (2019) Toward understanding the differences of pm 2.5 characteristics among five China urban cities. Asia-Pacific J Atmos Sci 56(4):1–10
Zhao X, Zhang X, Xu X, Xu J, Meng W, Pu W (2009) Seasonal and diurnal variations of ambient pm2.5 concentration in urban and rural environments in Beijing. Atmos Environ 43(18):2893–2900
Zhao C, Wang Y, Shi X, Zhang D, Wang C, Jiang JH, Zhang Q, Fan H (2019) Estimating the contribution of local primary emissions to particulate pollution using high-density station observations. J Geophys Res 124(3):1648–1661
Acknowledgements
The research work of Asif Iqbal Middya is supported by UGC-NET Junior Research Fellowship (UGC-Ref. No.: 3684/(NET-JULY 2018)) provided by the University Grants Commission, Government of India. This research work is supported by the project entitled- “Participatory and Realtime Pollution Monitoring System For Smart City”, funded by Higher Education, Science and Technology and Biotechnology, Department of Science and Technology, Government of West Bengal, India.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Middya, A.I., Roy, S. & Das, R. Spatiotemporal variability analysis of air pollution data from IoT based participatory sensing. J Ambient Intell Human Comput 14, 6719–6734 (2023). https://doi.org/10.1007/s12652-021-03536-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-021-03536-8