Skip to main content

Advertisement

Log in

Object detection and segmentation by composition of fast fuzzy C-mean clustering based maps

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The extraction of salient objects from a cluttered background without any prior knowledge is a challenging task in salient object detection and segmentation. A salient object can be detected from the uniqueness, rarity, or unproductivity of the salient regions in an image. However, an object with a similar color appearance may have a marginal visual divergence that is even difficult for the human eyes to recognize. In this paper, we propose a technique which compose and fuse the fast fuzzy c-mean (FFCM) clustering saliency maps to separate the salient object from the background in the image. To be specific, we first generate the maps using FFCM clustering, that contain specific parts of the salient region, which are composed later by using the Porter–Duff composition method. Outliers in the extracted salient regions are removed using a morphological technique in the post-processing step. To extract the final map from the initially constructed blended maps, we use a fused mask, which is the composite form of color prior, location prior, and frequency prior. Experiment results on six public data sets (MSRA, THUR-15000, MSRA-10K, HKU-IS, DUT-OMRON, and SED) clearly show the efficiency of the proposed method for images with a noisy background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. In: Ieee International Conference on computer vision and pattern recognition (cvpr 2009), pp 1597–1604

  • Azaza A, van de Weijer J, Douik A, Masana M (2018) Context proposals for saliency detection. Comput Vis Image Underst 174:111

    Article  Google Scholar 

  • Badoual A, Unser M, Depeursinge A (2019) Texture-driven parametric snakes for semiautomatic image segmentation. Comput Vis Image Underst 188:102793

    Article  Google Scholar 

  • Barranco F, Diaz J, Pino B, Ros E (2014) Realtime visual saliency architecture for fpga with top-down attention modulation. IEEE Trans Ind Inf 10(3):1726–1735

    Article  Google Scholar 

  • Chen L-Q, Xie X, Fan X, Ma W-Y, Zhang H-J, Zhou H-Q (2003) A visual attention model for adapting images on small displays. Multimed Syst 9(4):353–364

    Article  Google Scholar 

  • Chen S, Wang B, Tan X, Hu X (2020) Embedding attention and residual network for accurate salient object detection. IEEE Trans Cybern 50(5):2050–2062

    Article  Google Scholar 

  • Ding M, Tong R-F (2010) Content-aware copying and pasting in images. Vis Comput 26(6–8):721–729

    Article  Google Scholar 

  • Duff P (2015) Retrieved from https://www.w3.org/TR/compositing-1

  • Gao Y, Shi M, Tao D, Xu C (2015) Database saliency for fast image retrieval. IEEE Trans Multimed 17(3):359–369

    Article  Google Scholar 

  • Goferman S, Zelnik-Manor L, Tal A (2011a) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34(10):1915–1926

    Article  Google Scholar 

  • Goyal P, Mahajan D, Gupta A, Misra I (2019) Scaling and benchmarking self-supervised visual representation learning. In: Proceedings of the ieee/cvf International Conference on computer vision, pp 6391–6400

  • Harel J, Koch C, Perona P (2007) Graph-based visual saliency. In: Advances in neural information processing systems, pp 545–552

  • Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  • Jian M, Lam K-M, Dong J, Shen L (2014) Visual- patch-attention-aware saliency detection. IEEE Trans Cybern 45(8):1575–1586

    Article  Google Scholar 

  • Jiang B, Zhang L, Lu H, Yang C, Yang M-H (2013) Saliency detection via absorbing Markov chain. In: Proceedings of the ieee International Conference on computer vision, pp 1665–1672

  • Kim G, Yang S, Sim J-Y (2017) Saliency-based initialisation of gaussian mixture models for fully-automatic object segmentation. Electron Lett 53(25):1648–1649

    Article  Google Scholar 

  • Li X, Li Y, Shen C, Dick A, Van Den Hengel A (2013a) Contextual hypergraph modeling for salient object detection. In: Proceedings of the ieee International Conference on computer vision, pp 3328–3335

  • Li X, Lu H, Zhang L, Ruan X, Yang M-H (2013b) Saliency detection via dense and sparse reconstruction. In: Proceedings of the ieee International Conference on computer vision, pp 2976–2983

  • Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H-Y (2010) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367

    Google Scholar 

  • Liu Z, Zou W, Le Meur O (2014) Saliency tree: a novel saliency detection framework. IEEE Trans Image Process 23(5):1937–1952

    Article  MathSciNet  MATH  Google Scholar 

  • Murabito F, Spampinato C, Palazzo S, Giordano D, Pogorelov K, Riegler M (2018) Top-down saliency detection driven by visual classification. Comput Vis Image Underst 172:67–76

    Article  Google Scholar 

  • Nawaz M, Yan H (2020) Saliency detection using deep features and affinity-based robust background subtraction. IEEE Trans Multimed

  • Nawaz M, Khan S, Cao J, Qureshi R, Yan H (2019a) Saliency detection by using blended membership maps of fast fuzzy-c-mean clustering. In: Eleventh International Conference on machine vision (icmv 2018), Vol. 11041, p. 1104123

  • Nawaz M, Khan S, Qureshi R, Yan H (2019b) Clustering based one-to-one hypergraph matching with a large number of feature points. Signal Process Image Commun 74:289–298

    Article  Google Scholar 

  • Perazzi F, Krahenbuhl P, Pritch Y, Hornung A (2012) Saliency filters: contrast based filtering for salient region detection. In: 2012 ieee Conference on computer vision and pattern recognition, pp 733740

  • Rahtu E, Kannala J, Salo M, Heikkila J (2010) Segmenting salient objects from images and videos. In: European Conference on computer vision, pp 366–379

  • Seo HJ, Milanfar P (2009) Static and space-time visual saliency detection by self-resemblance. J Vis 9(12):15

    Article  Google Scholar 

  • Shahid AR, Khan S, Yan H (2020a) Contour and region harmonic features for sub-local facial expression recognition. J Vis Commun Image Represent 73:102949

    Article  Google Scholar 

  • Shahid AR, Khan S, Yan H (2020b) Human expression recognition using facial shape based fourier descriptors fusion. In: Twelfth International Conference on machine vision (ICMV 2019), 11433, 114330P

  • Sokhandan A, Monadjemi A (2018) Visual tracking in video sequences based on biologically inspired mechanisms. Comput Vis Image Underst

  • Tavakoli HR, Rahtu E, Heikkila J(2011) Fast and efficient saliency detection using sparse sampling and kernel density estimation. In: Scandinavian Conference on image analysis, pp 666–675

  • THUR-15000 (2013) Retrieved from https://mmcheng.net/gsal/

  • Wang W, Lai Q, Fu H, Shen J, Ling H (2019) Salient object detection in the deep learning era: an in-depth survey. arXiv preprint arXiv:1904.09146

  • Wang Z, Xiang D, Hou S, Wu F (2016) Background-driven salient object detection. IEEE Trans Multimed 19(4):750–762

    Article  Google Scholar 

  • Xi X, Luo Y, Wang P, Qiao H (2019) Salient object detection based on an efficient end-to-end saliency regression network. Neurocomputing 323:265–276

    Article  Google Scholar 

  • Xue Y, Shi R, Liu Z (2011) Saliency detection using multiple region-based features. Opt Eng 50(5):057008

    Article  Google Scholar 

  • Yang C, Zhang L, Lu H (2013a) Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process Lett 20(7):637640

    Google Scholar 

  • Yang C, Zhang L, Lu H, Ruan X, Yang M-H (2013b) Saliency detection via graph-based manifold ranking. In: Proceedings of the ieee Conference on computer vision and pattern recognition, pp 31663173

  • Yuan Y, Li C, Kim J, Cai W, Feng DD (2017) Reversion correction and regularized random walk ranking for saliency detection. IEEE Trans Image Process 27(3):1311–1322

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Gu Z, Li H (2013) Sdsp: a novel saliency detection method by combining simple priors. In: 2013 ieee International Conference on image processing, pp 171–175

  • Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection. In: Proceedings of the ieee Conference on computer vision and pattern recognition, pp 2814–2821

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmood Nawaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, M., Qureshi, R., Teevno, M.A. et al. Object detection and segmentation by composition of fast fuzzy C-mean clustering based maps. J Ambient Intell Human Comput 14, 7173–7188 (2023). https://doi.org/10.1007/s12652-021-03570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03570-6

Keywords