Skip to main content
Log in

Comparison and extension of high performance adders for hybrid and error tolerant applications

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

In the modern applications there are lot of computing resources starting from Central Processing Units, Networks on Chips to Field Programmable Gate Arrays, each catering various types of operations. These factors motivate this research, to exploit 16-bit High Performance Variable Accuracy Reconfigurable Adder (HPVARA) and High Performance Error Tolerant Adder (HPETA-III) which are used extensively in many computing architectures for hybrid and error tolerant applications. The simulation based research outcome of the proposed HPVARA structure shows 13.69%, 15.95%, 9.82%, 22.53%, 13.56% improved Area Delay Product and 12.15%, 11.86%, 8.74%, 15.12%, 14.96% improved Power Delay Product with the computational outputs varying between 91.788% and 100% with the input operand pair compared to the existing ACA-I, ACA-II, GDA, VARA4 and conventional CSLA architectures. The second part of the research is focused on optimizing the design of the High Performance Error Tolerant Adder (HPETA-III). The proposed HPETA-III design performance is evaluated to offer a savings of logic gate count ranges from 268, 212, 173, 184, 196, 172, 68, 76, 60, 21 with respect to CSLA, VARA4, HSSSA, SAET-CSLA, ETCSLA, HSETA, HPETA-I, HPETA-II, CEETA, CEETA1 architectures respectively and also interesting results have been observed with reduced power, delay, PDP and ADP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The program codes of the proposed designs generated during the current study are available from the corresponding author on reasonable request.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jothin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jothin, R., Vasanthanayaki, C., Sreelatha, P. et al. Comparison and extension of high performance adders for hybrid and error tolerant applications. J Ambient Intell Human Comput 14, 7219–7230 (2023). https://doi.org/10.1007/s12652-021-03574-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03574-2

Keywords

Navigation