Skip to main content
Log in

A novel single/multi-objective frameworks for techno-economic operation in power systems using tunicate swarm optimization technique

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

This paper presents an efficient and reliable bio-inspired based meta-heuristic optimization algorithm to solve the optimal power flow (OPF) problem in modern power systems. The proposed algorithm is called, in the sequel, tunicate swarm algorithm (TSA). TSA combines the jet propulsion and swarm behaviors of tunicates during the navigation and foraging process for finding the optimal solution of the OPF problem. In the OPF problem, single and multi objective frameworks are developed and discussed. The developed frameworks aim to achieve individual and multidimensional economic and technical and environmental benefits to achieve the previous benefits, it is applied to single and multi-objective objective functions such as generation cost minimization, active power loss minimization, reactive power loss minimization, voltage profile improvement, and voltage stability enhancement. For the multi-objective function, the Pareto concept is implemented to generate a set of non-dominated solutions. The best compromise solution is extracted using fuzzy set theory. The performance of the developed frameworks are evaluated on two standard systems with 19 studied cases. The simulation results are compared with those obtained by other competitive algorithms in the literature. The simulation results are promising and show the high effectiveness and robustness of the proposed TSA in terms of the the low statistical indices, standard deviation, relative errors, maximum absolute error and root mean square error levels, for all tested cases. In addition, the sensitivity analysis study confirms that the proposed hybrid method produces robust results against parameter variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasi M, Abbasi E, Mohammadi-Ivatloo B (2021) Single and multi-objective optimal power flow using a new differential-based harmony search algorithm. J Ambient Intell Humaniz Comput 12:851–871

    Article  Google Scholar 

  • Abd El-Sattar S, Kamel S, El Sehiemy RA, Jurado F, Yu J (2019) Single- and multi-objective optimal power flow frameworks using Jaya optimization technique. Neural Comput Appl 31(12):8787–8806

    Article  Google Scholar 

  • Abido M (2004) Multiobjective optimal power flow using strength pareto evolutionary algorithm. In: 39th International Universities Power Engineering Conference, 2004. UPEC 2004., IEEE, vol 1, pp 457–461

  • Abido M (2002) Optimal power flow using Tabu search algorithm. Electr Power Compon Syst 30(5):469–483

    Article  Google Scholar 

  • Abido MA (2002) Optimal power flow using particle swarm optimization. Int J Electr Power Energy Syst 24(7):563–571

    Article  Google Scholar 

  • Abou El Ela A, Abido M, Spea S (2009) Optimal power flow using differential evolution algorithm. Electr Eng 91(2):69–78

    Article  Google Scholar 

  • Abou El Ela A, Abido M, Spea S (2010) Optimal power flow using differential evolution algorithm. Electr Power Syst Res 80(7):878–885

    Article  Google Scholar 

  • Abou El-Ela A, Kinawy A, El-Sehiemy R, Mouwafi M (2011) Optimal reactive power dispatch using ant colony optimization algorithm. Electr Eng 93(2):103–116

    Article  Google Scholar 

  • Adaryani MR, Karami A (2013) Artificial bee colony algorithm for solving multi-objective optimal power flow problem. Int J Electr Power Energy Syst 53:219–230

    Article  Google Scholar 

  • Arul R, Ravi G, Velusami S (2013) Solving optimal power flow problems using chaotic self-adaptive differential harmony search algorithm. Electr Power Compon Syst 41(8):782–805

    Article  Google Scholar 

  • Attia AF, Al-Turki YA, Abusorrah AM (2012) Optimal power flow using adapted genetic algorithm with adjusting population size. Electr Power Compon Syst 40(11):1285–1299

    Article  Google Scholar 

  • Attia AF, El Sehiemy RA, Hasanien HM (2018) Optimal power flow solution in power systems using a novel sine-cosine algorithm. Int J Electr Power Energy Syst 99:331–343

    Article  Google Scholar 

  • Bakirtzis AG, Biskas PN, E ZC, Vasilios P (2002) Optimal power flow by enhanced genetic algorithm. IEEE Trans Power Syst 17(2):229–236

    Article  Google Scholar 

  • Bentouati B, Khelifi A, Shaheen AM, El-Sehiemy RA (2020) An enhanced moth-swarm algorithm for efficient energy management based multi dimensions OPF problem. J Ambient Intell Humaniz Comput 1–21

  • Bhattacharya A, Chattopadhyay P (2011) Application of biogeography-based optimisation to solve different optimal power flow problems. IET Gener Transm Distrib 5(1):70–80

    Article  Google Scholar 

  • Bhowmik AR, Chakraborty AK (2015) Solution of optimal power flow using non dominated sorting multi objective opposition based gravitational search algorithm. Int J Electr Power Energy Syst 64:1237–1250

    Article  Google Scholar 

  • Biswas PP, Suganthan PN, Mallipeddi R, Amaratunga GA (2018) Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques. Eng Appl Artif Intell 68:81–100

    Article  Google Scholar 

  • Bouchekara H (2014) Optimal power flow using black-hole-based optimization approach. Appl Soft Comput 24:879–888

    Article  Google Scholar 

  • Bouchekara H, Abido M, Boucherma M (2014) Optimal power flow using teaching-learning-based optimization technique. Electr Power Syst Res 114:49–59

    Article  Google Scholar 

  • Bouchekara HR, Chaib A, Abido MA, El-Sehiemy RA (2016) Optimal power flow using an improved colliding bodies optimization algorithm. Appl Soft Comput 42:119–131

    Article  Google Scholar 

  • Chen G, Yi X, Zhang Z, Lei H (2018) Solving the multi-objective optimal power flow problem using the multi-objective firefly algorithm with a constraints-prior pareto-domination approach. Energies 11(12):3438

    Article  Google Scholar 

  • Coelho LS, Mariani VC, Leite JV (2012) Solution of Jiles-Atherton vector hysteresis parameters estimation by modified differential evolution approaches. Expert Syst Appl 39(2):2021–2025

    Article  Google Scholar 

  • Dogan A, Yalcinoz T, Alci M (2016) A comparison of heuristic methods for optimum power flow considering valve point effect. Elektronika Ir Elektrotechnika 22(5):32–37

    Article  Google Scholar 

  • Duman S, Güvenç U, Sönmez Y, Yörükeren N (2012) Optimal power flow using gravitational search algorithm. Energy Convers Manage 59:86–95

    Article  Google Scholar 

  • El Sehiemy RA, Selim F, Bentouati B, Abido M (2020) A novel multi-objective hybrid particle swarm and salp optimization algorithm for technical-economical-environmental operation in power systems. Energy 193:116817

    Article  Google Scholar 

  • El-Fergany AA, Hasanien HM (2015) Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electr Power Compon Syst 43(13):1548–1559

    Article  Google Scholar 

  • Elhosseini MA, El Sehiemy RA, Rashwan YI, Gao X (2019) On the performance improvement of elephant herding optimization algorithm. Knowl-Based Syst 166:58–70

    Article  Google Scholar 

  • Ghasemi M, Ghavidel S, Rahmani S, Roosta A, Falah H (2014) A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions. Eng Appl Artif Intell 29:54–69

    Article  Google Scholar 

  • Hahn TK, Kim MK, Hur D, Park JK, Yoon YT (2008) Evaluation of available transfer capability using fuzzy multi-objective contingency-constrained optimal power flow. Electr Power Syst Res 78(5):873–882

    Article  Google Scholar 

  • Islam MZ, Wahab NIA, Veerasamy V, Hizam H, Mailah NF, Guerrero JM, Mohd Nasir MN (2020) A Harris hawks optimization based single-and multi-objective optimal power flow considering environmental emission. Sustainability 12(13):5248

    Article  Google Scholar 

  • Jahan MS, Amjady N (2013) Solution of large-scale security constrained optimal power flow by a new bi-level optimisation approach based on enhanced gravitational search algorithm. IET Gener Transm Distrib 7(12):1481–1491

    Article  Google Scholar 

  • Kaur S, Awasthi LK, Sangal A, Dhiman G (2020) Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541

    Article  Google Scholar 

  • Khorsandi A, Hosseinian S, Ghazanfari A (2013) Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem. Electr Power Syst Res 95:206–213

    Article  Google Scholar 

  • Kumari MS, Maheswarapu S (2010) Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution. Int J Electr Power Energy Syst 32(6):736–742

    Article  Google Scholar 

  • Lai LL, Ma J, Yokoyama R, Zhao M (1997) Improved genetic algorithms for optimal power flow under both normal and contingent operation states. Int J Electr Power Energy Syst 19(5):287–292

    Article  Google Scholar 

  • Lee K, Park Y, Ortiz J (1985) A united approach to optimal real and reactive power dispatch. IEEE Trans Power Appar Syst 5:1147–1153

    Article  Google Scholar 

  • Liang RH, Tsai SR, Chen YT, Tseng WT (2011) Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electr Power Syst Res 81(7):1466–1474

    Article  Google Scholar 

  • Lu H, Zhou R, Fei Z, Shi J (2018) A multi-objective evolutionary algorithm based on pareto prediction for automatic test task scheduling problems. Appl Soft Comput 66:394–412

    Article  Google Scholar 

  • Mandal B, Roy PK (2014) Multi-objective optimal power flow using quasi-oppositional teaching learning based optimization. Appl Soft Comput 21:590–606

    Article  Google Scholar 

  • Mojtaba G, Sahand G, Mehdi GM, Masihallah G, Azizi VA (2014) Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy 78:276–289

    Article  Google Scholar 

  • Mojtaba G, Sahand G, Mohsen G, Ebrahim A (2015) An improved teaching-learning-based optimization algorithm using lévy mutation strategy for non-smooth optimal power flow. Int J Electr Power Energy Syst 65:375–384

    Article  Google Scholar 

  • Naderi E, Pourakbari-Kasmaei M, Cerna FV, Lehtonen M (2021) A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems. Int J Electr Power Energy Syst 125:106492

    Article  Google Scholar 

  • Niknam Taher JM, Mohammad RN, Reza M (2011) A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy 36(11):6420–6432

    Article  Google Scholar 

  • Niknam T, Rasoul Narimani M, Jabbari M, Malekpour AR (2011) A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy 36(11):6420–6432

    Article  Google Scholar 

  • Ongsakul W, Tantimaporn T (2006) Optimal power flow by improved evolutionary programming. Electr Power Compon Syst 34(1):79–95

    Article  Google Scholar 

  • Ouafa H, Linda S, Tarek B (2017) Multi-objective optimal power flow considering the fuel cost, emission, voltage deviation and power losses using multi-objective dragonfly algorithm. In: proceedings of the international conference on recent advances in electrical systems, Tunusia

  • Paranjothi S, Anburaja K (2002) Optimal power flow using refined genetic algorithm. Electr Power Compon Syst 30(10):1055–1063

    Article  Google Scholar 

  • Rao RV, Saroj A (2017) A self-adaptive multi-population based Jaya algorithm for engineering optimization. Swarm Evol Comput 37:1–26

    Article  Google Scholar 

  • Reddy SS (2019) Optimal power flow using hybrid differential evolution and harmony search algorithm. Int J Mach Learn Cybern 10(5):1077–1091

    Article  MathSciNet  Google Scholar 

  • Roa-Sepulveda C, Pavez-Lazo B (2003) A solution to the optimal power flow using simulated annealing. Int J Electr Power Energy Syst 25(1):47–57

    Article  Google Scholar 

  • Rosehart WD, Canizares CA, Quintana VH (2003) Multiobjective optimal power flows to evaluate voltage security costs in power networks. IEEE Trans Power Syst 18(2):578–587

    Article  Google Scholar 

  • Roy PK, Paul C (2015) Optimal power flow using krill herd algorithm. Int Trans Electr Energy Syst 25(8):1397–1419

    Article  Google Scholar 

  • Sayah S, Zehar K (2008) Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Convers Manag 49(11):3036–3042 (special Issue 3rd International Conference on Thermal Engineering: Theory and Applications)

    Article  Google Scholar 

  • Shaheen AM, El-Sehiemy RA, Farrag SM (2015) Adequate planning of shunt power capacitors involving transformer capacity release benefit. IEEE Syst J 12(1):373–382

    Article  Google Scholar 

  • Shaheen AM, El-Sehiemy RA, Farrag SM (2016) Optimal reactive power dispatch using backtracking search algorithm. Aust J Electr Electron Eng 13(3):200–210

    Article  Google Scholar 

  • Shaheen AM, El-Sehiemy RA, Farrag SM (2016) Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm. IET Gener Transm Distrib 10(7):1634–1647

    Article  Google Scholar 

  • Shaheen AM, Farrag SM, El-Sehiemy RA (2017) Mopf solution methodology. IET Gener Transm Distrib 11(2):570–581

    Article  Google Scholar 

  • Shaheen AM, El-Sehiemy RA, Alharthi MM, Ghoneim SS, Ginidi AR (2021) Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional opf framework. Energy 237:121478

    Article  Google Scholar 

  • Sirote K, Apirat S, Suttichai P, Rongrit C, R WN (2018) A hybrid da-pso optimization algorithm for multiobjective optimal power flow problems. Energies 11(9):2270

    Article  Google Scholar 

  • Sivasubramani S, Swarup K (2011) Multi-objective harmony search algorithm for optimal power flow problem. Int J Electr Power Energy Syst 33(3):745–752

    Article  Google Scholar 

  • Vaisakh K, Srinivas L (2011) Evolving ant direction differential evolution for OPF with non-smooth cost functions. Eng Appl Artif Intell 24(3):426–436

    Article  Google Scholar 

  • Vaisakh K, Srinivas L (2011) Genetic evolving ant direction HDE for OPF with non-smooth cost functions and statistical analysis. Expert Syst Appl 38(3):2046–2062

    Article  Google Scholar 

  • Wang L, Xu Y (2011) An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems. Expert Syst Appl 38(12):15103–15109

    Article  MathSciNet  Google Scholar 

  • Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation, Springer, pp 240–249

  • Yu K, Chen X, Wang X, Wang Z (2017) Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization. Energy Convers Manage 145:233–246

    Article  Google Scholar 

  • Yuryevich J, Wong KP (1999) Evolutionary programming based optimal power flow algorithm. IEEE Trans Power Syst 14(4):1245–1250

    Article  Google Scholar 

  • Zhang XP, Handschin E, Yao M (2001) Modeling of the generalized unified power flow controller (gupfc) in a nonlinear interior point opf. IEEE Trans Power Syst 16(3):367–373

    Article  Google Scholar 

  • Zhang J, Wang S, Tang Q, Zhou Y, Zeng T (2019) An improved nsga-iii integrating adaptive elimination strategy to solution of many-objective optimal power flow problems. Energy 172:945–957

    Article  Google Scholar 

  • Zia U, Shaorong W, Jordan R, Jinmu L (2019) A solution to the optimal power flow problem considering wt and pv generation. IEEE Access 7:46763–46772

    Article  Google Scholar 

  • Zimmerman R D CEMS (2020) Matpower. https://matpower.org/

Download references

Acknowledgements

Prof. Ragab A. El-Sehiemy would like to thank Dr. Mouhamed Kouki-Ecole Centrale De Nantes-France for his efforts in the coding and revising this paper. His efforts are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragab A. El-Sehiemy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Parameters of TSA

Appendix: Parameters of TSA

Table 13 shows the main parameters of the proposed TSA. The table contains the maximum number of iterations, population size. These values are kept for all competitive algorithms.

Table 13 Parameters of TSA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sehiemy, R.A. A novel single/multi-objective frameworks for techno-economic operation in power systems using tunicate swarm optimization technique. J Ambient Intell Human Comput 13, 1073–1091 (2022). https://doi.org/10.1007/s12652-021-03622-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03622-x

Keywords

Navigation