Skip to main content

Advertisement

Log in

Detecting epilepsy in EEG signals using synchro-extracting-transform (SET) supported classification technique

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Epilepsy is one of the medical conditions in human caused by the disorder in central-nervous-system (CNS). Early detection and treatment are essential patient healthcare. Brain condition monitoring with electroencephalogram (EEG) is a commonly adopted medical practice as it provides vital information regarding the brain activity. This research work aims to present a detailed examination on EEG signals with improved detection accuracy using synchro-extracting-transform (SET); which converts the complex 1D EEG into 2D images using time–frequency transformation. The proposed EEG classification pipeline consists of the following phases: (i) transforming the EEG into RGB scaled image, (ii) implementing the discrete-wavelet-transform and local-binary-pattern to enhance the image textures, (iii) mining the essential texture and entropy features, (iv) dominant feature selection with firefly algorithm, (v) serial feature concatenation, and (vi) binary classifier implementation and fivefold cross validation. In this work, the classification of EEG is performed with; (i) handcrafted features, (ii) deep-features and (iii) concatenated deep and handcrafted features and the results were presented and discussed. The proposed approach helped to achieve a better classification accuracy with handcrafted features, deep features and concatenated features for EEG datasets considered in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Acharya UR, Sree SV, Chattopadhyay S, Yu W, Ang PCA (2011) Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int J Neural Syst 21(03):199–211

    Google Scholar 

  • Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JE (2015) Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl Based Syst 88:85–96

    Google Scholar 

  • Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ, Fabell MKM, Tanik UJ et al (2019) Automated detection of Alzheimer’s disease using brain MRI images–a study with various feature extraction techniques. J Med Syst 43(9):302

    Google Scholar 

  • Ahilan A, Manogaran G, Raja C, Kadry S, Kumar SN, Kumar CA et al (2019) Segmentation by fractional order darwinian particle swarm optimization based multilevel thresholding and improved lossless prediction-based compression algorithm for medical images. IEEE Access 7:89570–89580

    Google Scholar 

  • Ambikapathy B, Kirshnamurthy K, Venkatesan R (2018) Assessment of electromyograms using genetic algorithm and artificial neural networks. Evol Intell 14:261–271

    Google Scholar 

  • Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64(6):061907

    Google Scholar 

  • Arunkumar N, Ramkumar K, Venkatraman V, Abdulhay E, Fernandes SL, Kadry S, Segal S (2017) Classification of focal and non focal EEG using entropies. Pattern Recognit Lett 94:112–117

    Google Scholar 

  • Bakiya A, Kamalanand K, Rajinikanth V, Nayak RS, Kadry S (2020) Deep neural network assisted diagnosis of time-frequency transformed electromyograms. Multimed Tools Appl 79(15):11051–11067

    Google Scholar 

  • Bhandary A, Prabhu GA, Rajinikanth V, Thanaraj KP, Satapathy SC, Robbins DE et al (2020) Deep-learning framework to detect lung abnormality–a study with chest X-Ray and lung CT scan images. Pattern Recognit Lett 129:271–278

    Google Scholar 

  • Bhattacharyya A, Pachori RB, Upadhyay A, Acharya UR (2017) Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals. Appl Sci 7(4):385

    Google Scholar 

  • Bhattacharyya A, Sharma M, Pachori RB, Sircar P, Acharya UR (2018) A novel approach for automated detection of focal EEG signals using empirical wavelet transform. Neural Comput Appl 29(8):47–57

    Google Scholar 

  • Brynolfsson P, Löfstedt T, Asklund T, Nyholm T, Garpebring A (2018) Gray-level invariant Haralick texture features. Radiother Oncol 127:S279–S280

    Google Scholar 

  • Chakrabarti C, Mumford C (1999) Efficient realizations of encoders and decoders based on the 2-D discrete wavelet transform. IEEE Trans Very Large Scale Integr VLSI Syst 7(3):289–298

    Google Scholar 

  • Chandaka S, Chatterjee A, Munshi S (2009) Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Syst Appl 36(2):1329–1336

    Google Scholar 

  • Chang FJ, Chang YT (2006) Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv Water Resour 29(1):1–10

    Google Scholar 

  • Chen G (2014) Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst Appl 41(5):2391–2394

    Google Scholar 

  • Cheng C, Parhi KK (2007) High-speed VLSI implementation of 2-D discrete wavelet transform. IEEE Trans Signal Process 56(1):393–403

    MathSciNet  MATH  Google Scholar 

  • Chua KC, Chandran V, Acharya UR, Lim CM (2011) Application of higher order spectra to identify epileptic EEG. J Med Syst 35(6):1563–1571

    Google Scholar 

  • Cunningham P, Delany SJ (2020) k-Nearest neighbour classifiers. arXiv preprint http://arxiv.org/abs/2004.04523

  • Das AB, Bhuiyan MIH (2016) Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD-DWT domain. Biomed Signal Process Control 29:11–21

    Google Scholar 

  • Deivasigamani S, Senthilpari C, Yong WH (2016) Classification of focal and nonfocal EEG signals using ANFIS classifier for epilepsy detection. Int J Imaging Syst Technol 26(4):277–283

    Google Scholar 

  • Dey N, Rajinikant V, Fong SJ, Kaiser MS, Mahmud M (2020) Social-group-optimization assisted Kapur’s entropy and morphological segmentation for automated detection of COVID-19 infection from computed tomography images. Cogn Comput. https://doi.org/10.1007/s12559-020-09751-3

    Article  Google Scholar 

  • Epilepsy Foundation (2014) https://www.epilepsy.com/learn/about-epilepsy-basics/who-gets-epilepsy. Accessed Sept 2020

  • Farid DM, Zhang L, Rahman CM, Hossain MA, Strachan R (2014) Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Syst Appl 41(4):1937–1946

    Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    MathSciNet  Google Scholar 

  • Fernandes SL, Rajinikanth V, Kadry S (2019a) A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consumer Electron Mag 8(5):31–36

    Google Scholar 

  • Fernandes SL, Tanik UJ, Rajinikanth V, Karthik KA (2019b) A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04369-5

    Article  Google Scholar 

  • Franchini F, Its AR, Korepin VE (2007) Renyi entropy of the XY spin chain. J Phys A Math Theor 41(2):025302

    MathSciNet  MATH  Google Scholar 

  • Gudigar A, Raghavendra U, Devasia T, Nayak K, Danish SM, Kamath G et al (2019) Global weighted LBP based entropy features for the assessment of pulmonary hypertension. Pattern Recognit Lett 125:35–41

    Google Scholar 

  • Güler I, Übeyli ED (2005) Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J Neurosci Methods 148(2):113–121

    Google Scholar 

  • Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    MathSciNet  MATH  Google Scholar 

  • Gupta V, Pachori RB (2020) Classification of focal EEG signals using FBSE based flexible time-frequency coverage wavelet transform. Biomed Signal Process Control 62:102124

    Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Google Scholar 

  • Henley WE, Hand DJ (1996) AK-nearest-neighbour classifier for assessing consumer credit risk. J R Stat Soc Ser D Stat 45(1):77–95

    Google Scholar 

  • Jahmunah V, Oh SL, Rajinikanth V, Ciaccio EJ, Cheong KH, Arunkumar N, Acharya UR (2019) Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 100:101698

    Google Scholar 

  • Kadry S, Rajinikanth V, Rho S, Raja NSM, Rao VS, Thanaraj KP (2020) Development of a machine-learning system to classify lung CT scan images into normal/COVID-19 class. arXiv preprint http://arxiv.org/abs/2004.13122

  • Kannappan P (1972) On Shannon’s entropy, directed divergence and inaccuracy. Z Wahrscheinlichkeitstheorie Verwandte Geb 22(2):95–100

    MathSciNet  MATH  Google Scholar 

  • Kannathal N, Choo ML, Acharya UR, Sadasivan PK (2005) Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed 80(3):187–194

    Google Scholar 

  • Kapur JN, Sahoo PK, Wong AK (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput vis Graph Image Process 29(3):273–285

    Google Scholar 

  • Krishnan PT, Balasubramanian P (2016) Automated EEG seizure detection based on S-transform. In: 2016 IEEE international conference on computational intelligence and computing research (ICCIC), pp 1–5. IEEE

  • Li Z, Gao J, Li H, Zhang Z, Liu N, Zhu X (2020) Synchroextracting transform: the theory analysis and comparisons with the synchrosqueezing transform. Signal Process 166:107243

    Google Scholar 

  • Lin H, Rajinikanth V (2018) Normality evaluation of EEG signals based on amplitude level and entropy values. Int J Signal Process Syst 6(3):22–26

    Google Scholar 

  • Liu L, Lao S, Fieguth PW, Guo Y, Wang X, Pietikäinen M (2016) Median robust extended local binary pattern for texture classification. IEEE Trans Image Process 25(3):1368–1381

    MathSciNet  MATH  Google Scholar 

  • Löfstedt T, Brynolfsson P, Asklund T, Nyholm T, Garpebring A (2019) Gray-level invariant Haralick texture features. PLoS ONE 14(2):e0212110

    Google Scholar 

  • Mahmud M, Vassanelli S (2016) Processing and analysis of multichannel extracellular neuronal signals: state-of-the-art and challenges. Front Neurosci 10:248

    Google Scholar 

  • Manickavasagam K, Sutha S, Kamalanand K (2014) Development of systems for classification of different plasmodium species in thin blood smear microscopic images. J Adv Microsc Res 9(2):86–92

    Google Scholar 

  • Moghaddamnia A, Gousheh MG, Piri J, Amin S, Han D (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 32(1):88–97

    Google Scholar 

  • Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66(3):247–259

    Google Scholar 

  • Murphy KP (2006) Naive Bayes classifiers. Univ Br Columbia 18:60

    Google Scholar 

  • Muthu B, Sivaparthipan CB, Manogaran G, Sundarasekar R, Kadry S, Shanthini A, Dasel A (2020) IOT based wearable sensor for diseases prediction and symptom analysis in healthcare sector. Peer Peer Netw Appl 13:2123–2134

    Google Scholar 

  • Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26(1):217–222

    Google Scholar 

  • Pugalenthi R, Rajakumar MP, Ramya J, Rajinikanth V (2019) Evaluation and classification of the brain tumor MRI using machine learning technique. J Control Eng Appl Inform 21(4):12–21

    Google Scholar 

  • Rajinikanth V, Joseph Raj AN, Thanaraj KP, Naik GR (2020) A customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection. Appl Sci 10(10):3429

    Google Scholar 

  • Roufayel R, Kadry S (2017) Expression of miR-23a by apoptotic regulators in human cancer: a review. Cancer Biol Ther 18(5):269–276

    Google Scholar 

  • Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21(3):660–674

    MathSciNet  Google Scholar 

  • Sarica A, Cerasa A, Quattrone A (2017) Random Forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front Aging Neurosci 9:329

    Google Scholar 

  • Sarkar S, Das S, Paul S, Polley S, Burman R, Chaudhuri SS (2013) Multi-level image segmentation based on fuzzy-Tsallis entropy and differential evolution. In: 2013 IEEE international conference on fuzzy systems (FUZZ-IEEE), pp 1–8. IEEE

  • Selvakumar B, Muneeswaran K (2019) Firefly algorithm-based feature selection for network intrusion detection. Comput Secur 81:148–155

    Google Scholar 

  • Sharma R, Pachori RB, Acharya UR (2015) Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 17(2):669–691

    Google Scholar 

  • Sharma M, Bhurane AA, Acharya UR (2018) MMSFL-OWFB: a novel class of orthogonal wavelet filters for epileptic seizure detection. Knowl Based Syst 160:265–277

    Google Scholar 

  • Singh K, Malhotra J (2019) IoT and cloud computing based automatic epileptic seizure detection using HOS features based random forest classification. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-019-01613-7

    Article  Google Scholar 

  • Singh K, Malhotra J (2021) Cloud based ensemble machine learning approach for smart detection of epileptic seizures using higher order spectral analysis. Phys Eng Sci Med 44(1):313–324

    Google Scholar 

  • Srinivasan V, Eswaran C, Sriraam N (2007) Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed 11(3):288–295

    Google Scholar 

  • Subathra MSP, Mohammed MA, Maashi MS, Garcia-Zapirain B, Sairamya NJ, George ST (2020) Detection of focal and non-focal electroencephalogram signals using fast Walsh-Hadamard transform and artificial neural network. Sensors 20(17):4952

    Google Scholar 

  • Swain PH, Hauska H (1977) The decision tree classifier: design and potential. IEEE Trans Geosci Electron 15(3):142–147

    Google Scholar 

  • Tenllado C, Setoain J, Prieto M, Piñuel L, Tirado F (2008) Parallel implementation of the 2D discrete wavelet transform on graphics processing units: filter bank versus lifting. IEEE Trans Parallel Distrib Syst 19(3):299–310

    Google Scholar 

  • Thanaraj KP, Parvathavarthini B, Tanik UJ, Rajinikanth V, Kadry S, Kamalanand K (2020) Implementation of deep neural networks to classify EEG signals using Gramian angular summation field for epilepsy diagnosis. arXiv preprint http://arxiv.org/abs/2003.04534

  • Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52(1–2):479–487

    MathSciNet  MATH  Google Scholar 

  • Tuncer T, Dogan S, Akbal E (2019) A novel local senary pattern based epilepsy diagnosis system using EEG signals. Australas Phys Eng Sci Med 42(4):939–948

    Google Scholar 

  • Türk Ö, Özerdem MS (2019) Epilepsy detection by using scalogram based convolutional neural network from EEG signals. Brain Sci 9(5):115

    Google Scholar 

  • Tzallas AT, Tsipouras MG, Fotiadis DI (2009) Epileptic seizure detection in EEGs using time–frequency analysis. IEEE Trans Inf Technol Biomed 13(5):703–710

    Google Scholar 

  • Ullah I, Hussain M, Aboalsamh H (2018) An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Syst Appl 107:61–71

    Google Scholar 

  • Upadhyay R, Jharia S, Padhy PK, Kankar PK (2015) Application of wavelet fractal features for the automated detection of epileptic seizure using electroencephalogram signals. Int J Biomed Eng Technol 19(4):355–372

    Google Scholar 

  • Utgoff PE, Berkman NC, Clouse JA (1997) Decision tree induction based on efficient tree restructuring. Mach Learn 29(1):5–44

    MATH  Google Scholar 

  • Wang L, Xue W, Li Y, Luo M, Huang J, Cui W, Huang C (2017) Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 19(6):222

    Google Scholar 

  • Wang Y, Chen Y, Yang N, Zheng L, Dey N, Ashour AS et al (2019) Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network. Appl Soft Comput 74:40–50

    Google Scholar 

  • WHO (2019) https://www.who.int/news-room/fact-sheets/detail/epilepsy. Accessed Sept 2020

  • Yang XS (ed) (2013) Cuckoo search and firefly algorithm: theory and applications, vol 516. Springer, Berlin

    Google Scholar 

  • Yang B, Lu Y, Zhu K, Yang G, Liu J, Yin H (2017) Feature selection based on modified bat algorithm. IEICE Trans Inf Syst 100(8):1860–1869

    Google Scholar 

  • Zayed N, Elnemr HA (2015) Statistical analysis of Haralick texture features to discriminate lung abnormalities. Int J Biomed Imaging. https://doi.org/10.1155/2015/267807

    Article  Google Scholar 

  • Zeng W, Li M, Yuan C, Wang Q, Liu F, Wang Y (2019) Classification of focal and non focal EEG signals using empirical mode decomposition (EMD), phase space reconstruction (PSR) and neural networks. Artif Intell Rev 52(1):625–647

    Google Scholar 

  • Zhang Y, Song XF, Gong DW (2017) A return-cost-based binary firefly algorithm for feature selection. Inf Sci 418:561–574

    Google Scholar 

  • Zijlmans M, Jiruska P, Zelmann R, Leijten FS, Jefferys JG, Gotman J (2012) High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol 71(2):169–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seifedine Kadry.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajinikanth, V., Kadry, S., Taniar, D. et al. Detecting epilepsy in EEG signals using synchro-extracting-transform (SET) supported classification technique. J Ambient Intell Human Comput 14, 10123–10141 (2023). https://doi.org/10.1007/s12652-021-03676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03676-x

Keywords

Navigation