Skip to main content
Log in

Hyperspectral image classification using principle component analysis and deep convolutional neural network

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Recently, Deep learning architectures based on convolutional neural networks have established outstanding performance on different image processing applications such as object recognition, medical image processing, image enhancement, image segmentation, etc. It has shown gigantic improvement in the performance of 2-D and 3-D image processing because of its discriminant and highly connected feature representation capability. This article presents a lightweight deep convolutional neural network (DCNN) framework for hyperspectral image classification in the spectral domain. The proposed DCNN architecture consists of the chief six layers such as the input layer, the convolution layer, the Rectified Linear Unit Layer, the maximum pooling layer, the fully connected layer, and the classifier layer. Experimental results on the Indian-Pines hyperspectral image dataset reveal that the proposed lightweight DCNN can accomplish superior classification performance (98.20% accuracy) than several conventional techniques and the traditional deep learning-based techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Hamid O, Mohamed A, Jiang H, Penn G (2012, March) Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In 2012 IEEE international conference on Acoustics, speech and signal processing (ICASSP), IEEE, pp 4277–4280

  • Atkinson P, Tatnall A (1997) Introduction neural networks in remote sensing. Int J Remote Sens 18(4):699–709

    Article  Google Scholar 

  • Baumgardner M, Biehl L, Landgrebe D (2015) 220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3; Purdue University Research Repository: West Lafayette, ID, USA

  • Bhangale K, Mohanaprasad K (2022) Speech emotion recognition using mel frequency log spectrogram and deep convolutional neural network. In: Futuristic Communication and Network Technologies. Springer, Singapore, pp 241–250

  • Bhangale K, Ingle P, Kanase R, Desale D (2021, May) Multi-view multi-pose robust face recognition based on VGGNet. In: International Conference on Image Processing and Capsule Networks. Springer, Cham, pp 414–421

  • Bruzzone L, Prieto D (1999) A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images. IEEE Trans Geosci Remote Sens 37(2):1179–1184

    Article  Google Scholar 

  • Cao X, Zhou F, Xu L, Meng D, Xu Z, Paisley J (2018) Hyperspectral image classification with Markov random fields and a convolutional neural network. IEEE Trans Image Process 27(5):2354–2367

    Article  MathSciNet  Google Scholar 

  • Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2015) Compound rank-k projections for bilinear analysis. IEEE Trans Neural Netw Learn Syst 27(7):1502–1513

    Article  MathSciNet  Google Scholar 

  • Gualtieri J, Chettri S (2000, July) Support vector machines for classification of hyperspectral data. In: IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings, Cat. No. 00CH37120, vol 2, IEEE, pp 813–815

  • Hinton G, Salakhutdinov R (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  MathSciNet  Google Scholar 

  • Ji Y, Zhang H, Zhang Z, Liu M (2021) CNN-based encoder-decoder networks for salient object detection: a comprehensive review and recent advances. Inf Sci 546:835–857

    Article  MathSciNet  Google Scholar 

  • Landgrebe D (2002) Hyperspectral image data analysis. IEEE Signal Process Mag 19(1):17–28

    Article  Google Scholar 

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • Li J, Bioucas-Dias J, Plaza A (2012) Spectral–spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans Geosci Remote Sens 51(2):844–856

    Article  Google Scholar 

  • Li W, Prasad S, Fowler J, Bruce L (2011) Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans Geosci Remote Sens 50(4):1185–1198

    Article  Google Scholar 

  • Li Y, Chen R, Zhang Y, Li H (2020) A CNN-GCN framework for multi-label aerial image scene classification. In: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, IEEE, pp 1353–1356

  • Li Z, Nie F, Chang X, Nie L, Zhang H, Yang Y (2018a) Rank-constrained spectral clustering with flexible embedding. IEEE Trans Neural Netw Learn Syst 29(12):6073–6082

    Article  MathSciNet  Google Scholar 

  • Li Z, Nie F, Chang X, Yang Y, Zhang C, Sebe N (2018b) Dynamic affinity graph construction for spectral clustering using multiple features. IEEE Trans Neural Netw Learn Syst 29(12):6323–6332

    Article  MathSciNet  Google Scholar 

  • Li Z, Yao L, Chang X, Zhan K, Sun J, Zhang H (2019) Zero-shot event detection via event-adaptive concept relevance mining. Pattern Recogn 88:595–603

    Article  Google Scholar 

  • Luo M, Chang X, Gong C (2021) Reliable shot identification for complex event detection via visual-semantic embedding. Comput vis Image Underst 213:103300

    Article  Google Scholar 

  • Luo M, Chang X, Li Z, Nie L, Hauptmann AG, Zheng Q (2017a) Simple to complex cross-modal learning to rank. Comput vis Image Underst 163:67–77

    Article  Google Scholar 

  • Luo M, Chang X, Nie L, Yang Y, Hauptmann A, Zheng Q (2017b) An adaptive semisupervised feature analysis for video semantic recognition. IEEE Trans Cybern 48(2):648–660

    Article  Google Scholar 

  • Luo M, Nie F, Chang X, Yang Y, Hauptmann A, Zheng Q (2017c) Adaptive unsupervised feature selection with structure regularization. IEEE Trans Neural Netw Learn Syst 29(4):944–956

    Article  Google Scholar 

  • Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Article  Google Scholar 

  • Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66(3):247–259

    Article  Google Scholar 

  • Qin J, Pan W, Xiang X, Tan Y, Hou G (2020) A biological image classification method based on improved CNN. Eco Inform 58:101093

    Article  Google Scholar 

  • Ratle F, Camps-Valls G, Weston J (2010) Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans Geosci Remote Sens 48(5):2271–2282

    Article  Google Scholar 

  • Ren P, Xiao Y, Chang X, Huang P, Li Z, Chen X, Wang X (2021a) A comprehensive survey of neural architecture search: Challenges and solutions. ACM Comput Surv (CSUR) 54(4):1–34

    Article  Google Scholar 

  • Ren P, Xiao Y, Chang X, Huang P, Li Z, Gupta B, Wang X (2021b) A survey of deep active learning. ACM Comput Surv (CSUR) 54(9):1–40

    Article  Google Scholar 

  • Sainath T, Kingsbury B, Mohamed A, Dahl G, Saon G, Soltau H, Ramabhadran B (2013, December) Improvements to deep convolutional neural networks for LVCSR. In: 2013 IEEE workshop on automatic speech recognition and understanding, IEEE, pp 315–320

  • Santara A, Mani K, Hatwar P, Singh A, Garg A, Padia K, Mitra P (2017) BASS net: Band-adaptive spectral-spatial feature learning neural network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(9):5293–5301

    Article  Google Scholar 

  • Shabbir S, Ahmad M (2021) Hyperspectral image classification—traditional to deep models: a survey for future prospects. arXiv e-prints, arXiv-2101

  • Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1701–1708

  • Tarabalka Y, Benediktsson J, Chanussot J (2009) Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans Geosci Remote Sens 47(8):2973–2987

    Article  Google Scholar 

  • Yu C, Han R, Song M, Liu C, Chang C (2020) A simplified 2D–3D CNN architecture for hyperspectral image classification based on spatial–spectral fusion. IEEE J Selected Topics Appl Earth Observ Remote Sens 13:2485–2501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhya Shinde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, S., Patidar, H. Hyperspectral image classification using principle component analysis and deep convolutional neural network. J Ambient Intell Human Comput 14, 16491–16497 (2023). https://doi.org/10.1007/s12652-022-03876-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-022-03876-z

Keywords

Navigation