Skip to main content
Log in

A novel fault diagnosis in sensors of quadrotor unmanned aerial vehicle

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Rapid faults diagnosis and isolation in flight control systems is vital to evade undesirable effects on the environment, humans as well as on the system itself. In this research, a new strategy based on an online dynamical system is proposed for sensors fault diagnosis and isolation of quadrotor unmanned aerial vehicle (UAV). In the presented strategy, the multi-layer neural network (MLNN) is adopted as an observer for sensor faults diagnosis of quadrotor unmanned aerial vehicle (UAV). For the improvement of faults detection accuracy and effectiveness, two new adaptive weight-updating approaches are used in this study. Lyapunov function theory-based approaches are proposed for updating the learning rate parameters of a multi-layer neural network (MLNN). The key purpose of utilizing these approaches is to attain the global minima for nonlinear functions without enhancement of computational power to enhance the accuracy of faults diagnosis and isolation. The proposed fault detection (FD) approaches are applied to quadrotor unmanned aerial vehicle (UAV), the simulated results demonstrate that the proposed approaches are having the capability of rapid faults diagnosis and isolation of sensors compared to the conventional neural network and the techniques used in the literature (Chen et al. in IEEE Trans Syst Man Cybern Syst Hum 46:260–270, 2016a, b, c, d; Payam et al. in J Intell Robot Syst 90:473–484, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alessandri A, Caccia M, Veruggio G (1999) Fault detection of actuator faults in unmanned underwater vehicle. Control Eng Pract 7:357–368

    Article  Google Scholar 

  • Alvanchi A, Lee S, AbouRizk S (2011) Modeling framework and architecture of hybrid system dynamics and discrete event simulation for construction. Comput-Aided Civ Infrastruct Eng 26(2):77–91

    Article  Google Scholar 

  • Avram RC, Zhang X, Campbell J Muse J (2015) IMU sensor fault diagnosis and estimation for quadrotor UAVs. 9th IFAC symposium on fault detection, supervision and safety of technical processes 48: 380–385

  • Bhuiyan MZA, Wang G, Cao J, Wu J (2015) Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Trans Comput 64(2):382–395

    Article  MathSciNet  MATH  Google Scholar 

  • Campa G, Fravolini ML, Napolitano M, Seanor B (2002) Neural networks sensor validation for the flight control system of a B777 research model. Am Control Confer 1:412–417

    MATH  Google Scholar 

  • Castaldi P, Mimmo N, Simani S (2014) Differential geometry based active fault tolerant control for aircraft. Control Eng Pract 32:227–235

    Article  Google Scholar 

  • Chen M, Shi P, Lim C-C (2016a) Adaptive neural fault-tolerant control of a 3-DOF model helicopter system. IEEE Trans Syst Man Cybern Syst Hum 46:260–270

    Article  Google Scholar 

  • Chen Y, Yang J, Xu Y, Jiang S, Liu X, Wang Q (2016b) Status self validation of sensor arrays using gray forecasting model and bootstrap method. IEEE Trans Instrum Meas 65:1626–1640

    Article  Google Scholar 

  • Chen Y, Yang J, Xu Y, Jiang S, Liu X, Wang Q (2016c) Status self validation of sensor arrays using gray forecasting modelandbootstrap method. IEEE Trans Instrum Meas 65:1626–1640

    Article  Google Scholar 

  • Chen Y, Yang J, Xu Y, Jiang S, Liu X, Wang Q (2016d) Statusselfvalidationofsensorarraysusinggrayforecastingmodelandbootstrap method. IEEE Trans Instrum Meas 65:1626–1640

    Article  Google Scholar 

  • de Loza AF, Cieslak J, Henry D, D´avila J Zolghadri A (2015) Sensor fault diagnosis using a non-homogeneous high-order sliding mode observer with application to a transport aircraft. IET Control Theory Appl 9:598–607

  • Du D, Jiang B (2016) Actuator fault estimation and accommodation for switched systems with time delay: discrete-time case. Isatrans 62:137–144

    Google Scholar 

  • Fallaha CJ, Saad M, Kanaan HY, Al-Haddad K (2011) Sliding mode robot control with exponential reaching law. IEEE Trans Ind Electron 58:600–610

    Article  Google Scholar 

  • Freeman P, Pandita R, Srivastava N, Balas GJ (2013a) Model-based and data-driven fault detection performance for a small UAV. IEEE/ASME Trans Mechatron 18:1300–1309

    Article  Google Scholar 

  • Freeman P, Seiler P, Balas GJ (2013b) Air data system fault modeling and detection. Control Eng Pract 21:1290–1301

    Article  Google Scholar 

  • Goupil P, Marcos A (2014) The European ADDSAFE project: industrial and academic efforts towards advanced fault diagnosis. Control Eng Pract 31:109–125

    Article  Google Scholar 

  • Goupil P, Boada-bauxell J, Marcos A, Rosa P, Kerr M, Dalbies L (2015) An overview of the FP7 RECONFIGURE project: industrial, scientific and technological objectives. 9th IFAC symposium on fault detection, supervision and safety of technical processes 48: 976–981

  • Guo J, Qi J, Wu C, Wang M (2022) Actuator and sensor fault estimation of quadrotor UAV based on adaptive two-stage central difference kalman filter. Advances in Guidance, Navigation and Control, Singapore, Springer Singapore

  • Haykin S (2009) Neural networks and learning machine. McMaster University Hamilton, Ontario

    Google Scholar 

  • He W, Chen Y, Yin Z (2016a) Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans Cybern 46:620–629

    Article  Google Scholar 

  • He W, David AO, Yin Z, Sun C (2016b) Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans Syst Man Cybern Syst Hum 46:759–770

    Article  Google Scholar 

  • He W, Dong Y, Sun C (2016c) Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans Syst Man Cybern Syst Hum 46:334–344

    Article  Google Scholar 

  • Heredia G, Ollero A, Mahtani R, Remub V, Mausial M (2005) Detection of sensor faults in autonomous helicopters. Proc. Of the IEEE International Conference on Robotics and Automation. Barcelona, Spain

  • Hussain S, Mokhtar M, Howe JM (2015) Sensor failure detection, identification, and accommodation using fully connected cascade neural network. IEEE Trans Ind Electron 62:1683–1692

    Article  Google Scholar 

  • Khorasgani HG, Menhaj MB, Talebi H, Bakhtiari-Nejad F (2012) Neural-network-based sensor fault detection & isolation for nonlinear hybrid systems. IFAC Proc 45:1029–1034

    Article  Google Scholar 

  • Kiyak E, Kahvecioglu A, Caliskan F (2011) Aircraft sensor and actuator fault detection, isolation and accommodation. J Aerosp Eng 24:46–58

    Article  Google Scholar 

  • Li X-J, Yang G-H (2014) Fault detection for T-S fuzzy systems withunknownmembershipfunctions. IEEETrans FuzzySyst IEEETrans FuzzySyst 22:139–152

    Google Scholar 

  • Lu P, Van Eykeren L, van Kampen E, Chu Q (2015) Selective-reinitialisation multiple model adaptive estimation for fault detection and diagnosis. J Guid Control Dyn 38:1409–1425

    Article  Google Scholar 

  • Lu P, Van Kampen E-J, Chu Q (2016) Nonlinea raircraft sensor fault re- construction in the presence of disturbances validated by real flight data. Control Eng Pract 49:112–128

    Article  Google Scholar 

  • Marzat J, Piet-Lahanier H, Damongeot F, Walter E (2011) Control-based fault detection and isolation for autonomous aircraft. Proc Institut Mech Eng Part G 226:510–531

    Article  Google Scholar 

  • Mohammadi A, Ramezani A (2021) Adaptive analytical sensor fault detection, estimation and tolerant control of quadrotor in the presence of uncertainty and disturbance. Int J Syst Assur Eng Manag

  • Mu Y, Zhang H., Xi R, Wang Z, Sun J. (2021) Fault-tolerant control of nonlinear systems with actuator and sensor faults based on T–S fuzzy model and fuzzy observer. IEEE Transact Syst Man Cybern 1–10

  • Napolitano M, An Y, Seanor B (2000) “A fault tolerant flight control system for sensor and actuator failures using neural networks. Aircr Des 3:103–128

    Article  Google Scholar 

  • Payam A, Alireza A, Parisa F, Arman S (2018) A novel sensor fault detection in an unmanned quadrotor based on adaptive neural observer. J Intell Robot Syst 90:473–484

    Article  Google Scholar 

  • Sadeghzadeh I, Zhang Y (2011) A review on fault-tolerant control for unmanned aerial vehicles (UAVs). Infotech@ Aerospace, St. Louis

  • Samy I, Postlethwaite I, Gu D-W (2011) Survey and application of sensor fault detection and isolation schemes. Control Eng Pract 19:658–674

    Article  Google Scholar 

  • Shen Q, Jiang B, Shi P, Lim C-C (2014) Novel neural networksbased fault tolerant control scheme with fault alarm. IEEE Trans Cybern 44:2190–2201

    Article  Google Scholar 

  • Taimoor M, Aijun L (2020a) Adaptive strategy for fault detection, isolation and reconstruction of aircraft actuators and sensors. J Intell Fuzzy Syst 38:4993–5012

    Article  Google Scholar 

  • Taimoor M, Aijun L (2020b) Lyapunov theory based adaptive neural observers design for aircraft sensors fault detection and isolation. J Intell Robot Syst 98:311–323. https://doi.org/10.1007/s10846-019-01098-8

    Article  Google Scholar 

  • Taimoor M, Aijun L, Samiuddin M (2021) Sliding mode learning algorithm based adaptive neural observer strategy for fault estimation, detection and neural controller of an aircraft. J Ambient Intell Human Comput 12:2547–2571. https://doi.org/10.1007/s12652-020-02390-4

    Article  Google Scholar 

  • Tao G, Chen S, Joshi SM (2002) An adaptive actuator failure compensation controller using output feedback. IEEE Trans Autom Control 47:506–511

    Article  MathSciNet  MATH  Google Scholar 

  • ur Rahman H, Duan G, Wang G, Bhuiyan MZA, Chen J (2020) Trustworthy data acquisition and faulty sensor detection using gray code in cyber-physical system. CSE 58–65

  • Valmorbida G, W.-C. L, F. Mora-Camino (2005) A neural approach for fast simulation of flight mechanics. IEEE Computer Society

  • Venkatasubramanian V, Rengaswamy R, Yin K (2003) A review of process fault detection and diagnosis part I: quantitative model-based methods. Comput Chem Eng 27:293–311

    Article  Google Scholar 

  • Wandekokem ED, Mendel E, Fabris F, Valentim M, Batista RJ, Varejão FM, Rauber TW (2011) Diagnosing multiple faults in oil rig motor pumps using support vector machine classifier ensembles. Integr Comput Aided Eng 18(1):61–74

    Article  Google Scholar 

  • Wang L, He Y, Zhang Z, He C (2013) Trajectorytrackingofquadrotor aerial robot using improved dynamic inversion method. Intell Control Autom 4:343–348

    Article  Google Scholar 

  • Yang G-H, Wang H (2015) Fault detection and isolation for a class of uncertain state-feedback fuzzy control systems. IEEE Trans Fuzzy Syst 23:139–151

    Article  Google Scholar 

  • Yang P, Wang Z, Zhang Z, Hu X (2021) Sliding mode fault tolerant control for a quadrotor with varying load and actuator fault. Actuators 10(12):323

    Article  Google Scholar 

  • Yi Y, Guo L, Wang H (2009) Adaptive statistic tracking control based on two-step neural networks with time delays. IEEE Trans Neural Netw 20(3):420–429

    Article  Google Scholar 

  • Yin S, Xiao B, Ding SX, Zhou D (2016) A review on recent development of spacecraft attitude fault tolerant control system. IEEE Trans Ind Electron 65:3311–3320

    Article  Google Scholar 

Download references

Funding

I am grateful to all the reviewers for reviewing my paper. This research is supported by the National Natural Science Foundation of China (61773245, 61806113, 61873048, 91848206, 61973200, 62103245 and 62073199), the Natural Science Foundation of Shandong Province (ZR2020MF095), Taishan Scholarship Construction Engineering, and 2019 Science and Technology Project of West Coast New Area of Qingdao (2019-32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

See Table 3.

Table 3 Parameter specifications of quadrotor

Appendix B

Nomenclature

Parameter

Definition

\(p,q,r\)

Angular velocity about x, y, z axes [\(rad/s\)]

\({I}_{x}, {I}_{y}, {I}_{z}\)

Moment of inertia, [\(kg.{m}^{2}\)]

\(\varphi (.)\)

Neural Network activation function

\(w\)

NN weight parameter

ƞ

NN learning rate parameter

\(\varphi , \theta ,\psi \)

Euler Angles [\(rad or deg\)]

\(u, v,w\)

Velocities [m/sec] along \(x, y \mathrm{and} z\) axes

\({M}_{p}, {M}_{q},{M}_{r}\)

Roll, pitch and yaw moments

\({c}_{t}\)

Anti-torque coefficient

\({c}_{f}\)

Thrust force coefficient

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taimoor, M., Lu, X., Maqsood, H. et al. A novel fault diagnosis in sensors of quadrotor unmanned aerial vehicle. J Ambient Intell Human Comput 14, 14081–14099 (2023). https://doi.org/10.1007/s12652-022-04113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-022-04113-3

Keywords

Navigation