Skip to main content

Advertisement

Log in

Multiple attribute decision making based on Pythagorean fuzzy Aczel-Alsina average aggregation operators

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

A useful expansion of the intuitionistic fuzzy set (IFS) for dealing with ambiguities in information is the Pythagorean fuzzy set (PFS), which is one of the most frequently used fuzzy sets in data science. Due to these circumstances, the Aczel-Alsina operations are used in this study to formulate several Pythagorean fuzzy (PF) Aczel-Alsina aggregation operators, which include the PF Aczel-Alsina weighted average (PFAAWA) operator, PF Aczel-Alsina order weighted average (PFAAOWA) operator, and PF Aczel-Alsina hybrid average (PFAAHA) operator. The distinguishing characteristics of these potential operators are studied in detail. The primary advantage of using an advanced operator is that it provides decision-makers with a more comprehensive understanding of the situation. If we compare the results of this study to those of prior strategies, we can see that the approach proposed in this study is more thorough, more precise, and more concrete. As a result, this technique makes a significant contribution to the solution of real-world problems. Eventually, the suggested operator is put into practise in order to overcome the issues related to multi-attribute decision-making under the PF data environment. A numerical example has been used to show that the suggested method is valid, useful, and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aczel J, Alsina C (1982) Characterization of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements. Aequationes Math 25(1):313–315

    Article  MathSciNet  MATH  Google Scholar 

  • Alsina C, Frank MJ (2006) Schweizer B (2006) Associative Functions-Triangular Norms and Copulas. World Scientific Publishing, Danvers, MA

    Book  MATH  Google Scholar 

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  MATH  Google Scholar 

  • Atanassov KT, Gargov G (1989) Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst 31(3):343–349

    Article  MathSciNet  MATH  Google Scholar 

  • Aydin S, Kahraman C, Kabak M (2020) Development of harmonic aggregation operator with trapezoidal Pythagorean fuzzy numbers. Soft Comput 24:11791–11803

    Article  MATH  Google Scholar 

  • Garg H (2016) A new generalized pythagorean fuzzy information aggregation using einstein operations and its application to decision making. Int J Intell Syst 31(9):886–920

    Article  Google Scholar 

  • Garg H (2016) A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multi-criteria decision making problem. J Intell Fuzzy Syst 31(1):529–540

    Article  MATH  Google Scholar 

  • Garg H (2018) Some methods for strategic decision-making problems with immediate probabilities in Pythagorean fuzzy environment. J Intell Fuzzy Syst 31(4):687–712

    Article  Google Scholar 

  • Goguen JA (1967) \(L\)-fuzzy sets. J Math Anal Appl 8:145–174

    Article  MATH  Google Scholar 

  • Gou X, Xu Z, Ren P (2016) The properties of continuous Pythagorean fuzzy information. Int J Intell Syst 31:401–424

    Article  Google Scholar 

  • Hwang C (1981) Yoon K (1981) Multiple Attribute Decision Making: Methods and Applications. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Jana C, Senapati T, Pal M (2019) Pythagorean fuzzy Dombi aggregation operators and its applications in multiple attribute decision-making. Int J Intell Syst 34:2019–2038

    Article  Google Scholar 

  • Klement EP, Mesiar R (2000) Pap E (2000) Triangular Norms. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Klement EP, Mesiar R (2018) \(L\)-Fuzzy Sets and Isomorphic Lattices: Are All the “New” Results Really New? Mathematics 6:146; https://doi.org/10.3390/math6090146

  • Liang D, Xu Z (2017) The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Appl Soft Comput 60:167–179

    Article  Google Scholar 

  • Liang D, Darko AP, Xu Z (2018) Interval-valued Pythagorean fuzzy extended Bonferroni mean for dealing with heterogenous relationship among attributes. Int J Intell Syst 33(7):1381–1411

    Article  Google Scholar 

  • Li D, Zeng W (2018) Distance measure of pythagorean fuzzy sets. Int J Intell Syst 33(2):348–361

    Article  MathSciNet  Google Scholar 

  • Lu M, Wei G, Alsaadi FE, Hayat T, Alsaedi A (2017) Hesitant pythagorean fuzzy hamacher aggregation operators and their application to multiple attribute decision making. J Intell Fuzzy Syst 33(2):1105–1117

    Article  MATH  Google Scholar 

  • Lu M, Wei G (2017) Pythagorean uncertain linguistic aggregation operators for multiple attribute decision making. Int J Knowl-Based Intell Eng Syst 21(3):165–179

    Google Scholar 

  • Menger K (1942) Statistical metrics. Proceedings of the National Academy of Sciences USA 8:535–537

    Article  MathSciNet  MATH  Google Scholar 

  • Peng X, Yang Y (2016) Pythagorean fuzzy Choquet integral based MABAC method for multiple attribute group decision making. Int J Intell Syst 31(10):989–1020

    Article  MathSciNet  Google Scholar 

  • Rahman K, Abdullah S, Ahmed R, Ullah M (2017) Pythagorean fuzzy Einstein weighted geometric aggregation operator and their application to multiple attribute group decision making. J Intell Fuzzy Syst 33(1):635–647

    Article  MATH  Google Scholar 

  • Ren P, Xu Z, Gou X (2016) Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl Soft Comput 42:246–259

    Article  Google Scholar 

  • Sarkar A, Biswas A (2019) Multicriteria decision-making using Archimedean aggregation operators in Pythagorean hesitant fuzzy environment. Int J Intell Syst 34(7):1361–1386

    Article  Google Scholar 

  • Schweizer B, Sklar A (1960) Statistical metric spaces. Pacific J Math 10:313–334

    Article  MathSciNet  MATH  Google Scholar 

  • Schweizer B, Sklar A (1961) Associative functions and statistical triangle inequalities. Publ Math Debrecen 8:169–186

    Article  MathSciNet  MATH  Google Scholar 

  • Senapati T (2022) Approaches to multi-attribute decision making based on picture fuzzy Aczel-Alsina average aggregation operators. Comput Appl Math 41(40):1–28. https://doi.org/10.1007/s40314-021-01742-w

    Article  MathSciNet  MATH  Google Scholar 

  • Senapati T, Chen G, Yager RR (2022a) Aczel-Alsina aggregation operators and their application to intuitionistic fuzzy multiple attribute decision making. Int J Intell Syst 37(2):1529–1551

    Article  Google Scholar 

  • Senapati T, Chen G, Mesiar R, Yager RR (2022b) Novel Aczel-Alsina operations-based interval-valued intuitionistic fuzzy aggregation operators and its applications in multiple attribute decision-making process. Int J Intell Syst 37(8):5059–5081

    Article  Google Scholar 

  • Senapati T, Chen G, Mesiar R, Yager RR, Saha A (2022c) Novel Aczel-Alsina operations-based hesitant fuzzy aggregation operators and their applications in cyclone disaster assessment. Int J Gen Syst 51(5):511–546

    MathSciNet  Google Scholar 

  • Venkatesan D, Sriram S (2019) On Lukasiewicz disjunction and conjunction of Pythagorean fuzzy matrices. Int J Comput Sci Eng 7(6):861–865

    Google Scholar 

  • Wei G, Lu M, Tang X, Wei Y (2018) Pythagorean hesitant fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Int J Intell Syst 33(6):1197–1233

    Article  Google Scholar 

  • Wu S, Wei G (2017) Pythagorean fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Int J Knowl-Based Intell Eng Syst 21:189–201

    Google Scholar 

  • Yager RR, Abbasov AM (2013) Pythagorean membeship grades, complex numbers and decision making. Int J Intell Syst 28:436–452

    Article  Google Scholar 

  • Yager RR (2013) Pythagorean fuzzy subsets. Proc. Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, pp 57–61

    Google Scholar 

  • Yager RR (2014) Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst 22:958–965

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform. Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng S, Mu Z, Balezentis T (2018) A novel aggregation method for Pythagorean fuzzy multiple attribute group decision making. J Intell Fuzzy Syst 33(3):573–585

    Article  Google Scholar 

  • Zhang X, Xu Z (2014) Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int J Intell Syst 29:1061–1078

    Article  MathSciNet  Google Scholar 

  • Zhang X (2016) A novel approach based on similarity measure for pythagorean fuzzy multiple criteria group decision making. Int J Intell Syst 31:593–611

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No-12071376), the Slovak Research and Development Agency (Grant No. APVV-18-0052) and the IGA project of the Faculty of Science Palacky University Olomouc (Grant No-PrF2019015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Senapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

For the three PFEs \(\delta\), \(\delta _1\) and \(\delta _2\), and \(\varphi , \varphi _1, \varphi _2 > 0\), as provided in Definition 6, we may obtain

(i):
$$\begin{aligned}&\delta _1\bigoplus \delta _2 \\&\quad = \bigg \langle \sqrt{1-e^{-((-\log (1- \gamma ^2_{\delta _1}))^\wp +(-\log (1-\gamma ^2_{\delta _2}))^\wp )^{1/\wp }}}, \\&\quad \quad \sqrt{e^{-((-\log \upsilon ^2_{\delta _1})^\wp +(-\log \upsilon ^2_{\delta _2})^\wp )^{1/\wp }}}\bigg \rangle \\&\quad =\bigg \langle \sqrt{1-e^{-((-\log (1- \gamma ^2_{\delta _2}))^\wp +(-\log (1-\gamma ^2_{\delta _1}))^\wp )^{1/\wp }}},\\&\quad \quad \sqrt{e^{-((-\log \upsilon ^2_{\delta _2})^\wp +(-\log \upsilon ^2_{\delta _1})^\wp )^{1/\wp }}}\bigg \rangle =\delta _2 \bigoplus \delta _1 \end{aligned}.$$
(ii):

It is straightforward.

(iii):

Let \(t= \sqrt{1-e^{-((-\log (1- \gamma ^2_{\delta _1}))^\wp +(-\log (1-\gamma ^2_{\delta _2}))^\wp )^{1/\wp }}}.\)

Then \(\log (1-t^2)=-((-\log (1- \gamma ^2_{\delta _1}))^\wp +(-\log (1-\gamma ^2_{\delta _2}))^\wp )^{1/\wp }\). Using this, we get

$$\begin{aligned}&\varphi (\delta _1 \bigoplus \delta _2) \\&\quad =\varphi \bigg \langle \sqrt{1-e^{-((-\log (1- \gamma ^2_{\delta _1}))^\wp +(-\log (1-\gamma ^2_{\delta _2}))^\wp )^{1/\wp }}},\\&\quad \quad \sqrt{e^{-((-\log \upsilon ^2_{\delta _1})^\wp +(-\log \upsilon ^2_{\delta _2})^\wp )^{1/\wp }}}\bigg \rangle \\&\quad =\bigg \langle \sqrt{1-e^{-(\varphi ((-\log (1- \gamma ^2_{\delta _1}))^\wp +(-\log (1-\gamma ^2_{\delta _2}))^\wp ))^{1/\wp }}},\\&\quad \quad \sqrt{e^{-(\varphi ((-\log \upsilon ^2_{\delta _1})^\wp +(-\log \upsilon ^2_{\delta _2})^\wp ))^{1/\wp }}}\bigg \rangle \\&\quad =\bigg \langle \sqrt{1-e^{-(\varphi (-\log (1- \gamma ^2_{\delta _1}))^\wp )^{1/\wp }}}, \\&\quad \quad \sqrt{e^{-(\varphi (-\log \upsilon ^2_{\delta _1})^\wp )^{1/\wp }}}\bigg \rangle \\&\quad \bigoplus \bigg \langle \sqrt{1-e^{-(\varphi (-\log (1- \gamma ^2_{\delta _2}))^\wp )^{1/\wp }}}, \\&\quad \quad \sqrt{e^{-(\varphi (-\log \upsilon ^2_{\delta _2})^\wp )^{1/\wp }}}\bigg \rangle =\varphi \delta _1 \bigoplus \varphi \delta _2 \end{aligned}.$$
(iv):
$$\begin{aligned}&\varphi _1 \delta \bigoplus \varphi _2 \delta =\Big \langle \sqrt{1-e^{-(\varphi _1(-\log (1- \gamma ^2_{\delta }))^\wp )^{1/\wp }}}, \\&\quad \quad \sqrt{e^{-(\varphi _1(-\log \upsilon ^2_{\delta })^\wp )^{1/\wp }}}\Big \rangle \\&\quad \bigoplus \Big \langle \sqrt{1-e^{-(\varphi _2(-\log (1- \gamma ^2_{\delta }))^\wp )^{1/\wp }}}, \\&\quad \quad \sqrt{e^{-(\varphi _2(-\log \upsilon ^2_{\delta })^\wp )^{1/\wp }}}\Big \rangle \\&\quad =\Big \langle \sqrt{1-e^{-((\varphi _1+\varphi _2)(-\log (1- \gamma ^2_{\delta }))^\wp )^{1/\wp }}},\\&\quad \quad \sqrt{e^{-((\varphi _1+\varphi _2)(-\log \upsilon ^2_{\delta })^\wp )^{1/\wp }}}\Big \rangle \\&\quad =(\varphi _1+\varphi _2 )\delta \end{aligned}.$$
(v):
$$\begin{aligned}&(\delta _1 \bigotimes \delta _2)^\varphi = \Big \langle \sqrt{e^{-((-\log \gamma ^2_{\delta _1})^\wp +(-\log \gamma ^2_{\delta _2})^\wp )^{1/\wp }}}, \\&\quad \quad \sqrt{1-e^{-((-\log (1- \upsilon ^2_{\delta _1}))^\wp +(-\log (1-\upsilon ^2_{\delta _2}))^\wp )^{1/\wp }}}\Big \rangle ^\varphi \\&\quad =\Big \langle \sqrt{e^{-(\varphi ((-\log \gamma ^2_{\delta _1})^\wp +(-\log \gamma ^2_{\delta _2})^\wp ))^{1/\wp }}}, \\&\quad \quad \sqrt{1-e^{-(\varphi ((-\log (1- \upsilon ^2_{\delta _1}))^\wp +(-\log (1-\upsilon ^2_{\delta _2}))^\wp )^{1/\wp }}}\Big \rangle \\&\quad =\Big \langle \sqrt{e^{-(\varphi (-\log \gamma ^2_{\delta _1})^\wp )^{1/\wp }}}, \\&\quad \quad \sqrt{1-e^{-(\varphi (-\log (1- \upsilon ^2_{\delta _1}))^\wp )^{1/\wp }}}\Big \rangle \\&\quad \bigoplus \Big \langle \sqrt{e^{-(\varphi (-\log \gamma ^2_{\delta _2})^\wp )^{1/\wp }}}, \\&\quad \quad \sqrt{1-e^{-(\varphi (-\log (1- \upsilon ^2_{\delta _2}))^\wp )^{1/\wp }}}\Big \rangle \\&\quad =\delta _1^\varphi \bigotimes \delta _2^\varphi \end{aligned}.$$
(vi):
$$\begin{aligned}&\delta ^{\varphi _1} \bigotimes \delta ^{\varphi _2} =\Big \langle \sqrt{e^{-(\varphi _1(-\log \gamma ^2_{\delta })^\wp )^{1/\wp }}}, \\&\quad \quad \sqrt{1-e^{-(\varphi _1(-\log (1- \upsilon ^2_{\delta }))^\wp )^{1/\wp }}} \Big \rangle \\&\quad \bigotimes \Big \langle \sqrt{e^{-(\varphi _2(-\log \gamma ^2_{\delta })^\wp )^{1/\wp }}}, \\&\quad \quad \sqrt{1-e^{-(\varphi _2(-\log (1- \upsilon ^2_{\delta }))^\wp )^{1/\wp }}} \Big \rangle \\&\quad =\Big \langle \sqrt{e^{-((\varphi _1+\varphi _2)(-\log \gamma ^2_{\delta })^\wp )^{1/\wp }}},\\&\quad \quad \sqrt{1-e^{-((\varphi _1+\varphi _2)(-\log (1- \upsilon ^2_{\delta }))^\wp )^{1/\wp }}}\Big \rangle \\&\quad =\delta ^{(\varphi _1+\varphi _2 )} \end{aligned}.$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senapati, T., Chen, G., Mesiar, R. et al. Multiple attribute decision making based on Pythagorean fuzzy Aczel-Alsina average aggregation operators. J Ambient Intell Human Comput 14, 10931–10945 (2023). https://doi.org/10.1007/s12652-022-04360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-022-04360-4

Keywords