Skip to main content

Advertisement

An integrated framework based deep learning for cancer classification using microarray datasets

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Around the world, cancer is one of the leading reasons of mortality. The importance of earlier detection and prognosis of cancer types is highly significant for patients’ health. In recent research, deep neural networks were trained using gene expression microarray, to classify cancer. Biologists are able to monitor thousands of genes in one experiment using microarray technology. Microarray datasets are considered high-dimensional data, as they are cluttered with irrelevant, redundant, and noisy genes that contribute insignificantly to classification. The most informative genes contributing to cancer classification have been identified using computational intelligence algorithms. In this paper, we propose an integrated framework for cancer classification. This framework is divided into three tasks. Firstly, particle swarm optimization with ensemble learning (PSO-ensemble) reduces the microarray dataset's high dimensionality. Secondly, The Adaptive self-training method (ASTM) is used to solve low-size issues. Finally, a Convolutional Neural Network (CNN) was employed for classification. CNN has the ability to discover the complex non-linear relationships between features and select the most informative. Transfer learning was used sequentially with CNN to integrate the classification procedure because it can reduce the training time and computational complexity. Six microarray datasets are used, namely liver, breast, colon, prostate, central nervous system, and lung. The proposed CNN architecture with transfer learning provided 100% classification accuracy for colon, prostate, CNS and lung microarray datasets, and 97.62%, 95.45% accuracy for liver and breast cancer respectively. Experiments show that our proposed method delivers the highest classification accuracy and reduces training time with the smallest gene subset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and materials

Data are available upon request.

Code availability

Code is available upon request.

References

Download references

Funding

This study did not receive external or internal funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nashat Alrefai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest that are relevant to the content of this article.

Ethics approval

All information and the data source used in our study were mentioned in the research, and it is available and public for research purposes.

Consent for publication

We used a public dataset and cited it appropriately in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrefai, N., Ibrahim, O., Shehzad, H.M.F. et al. An integrated framework based deep learning for cancer classification using microarray datasets. J Ambient Intell Human Comput 14, 2249–2260 (2023). https://doi.org/10.1007/s12652-022-04482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-022-04482-9

Keywords