Skip to main content

Advertisement

Log in

Automatic classification of normal/AD brain MRI slices using whale-algorithm optimized hybrid image features

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

A Correction to this article was published on 17 February 2024

This article has been updated

Abstract

In recent years, the prevalence of Age-Related Illnesses (ARL) has been increasing among older individuals, and early recognition and treatment will result in better living conditions. It is well known that Alzheimer's Disease (AD) is among the ARD, and severe cases may result in dementia as well. It is the purpose of this study to propose a technique for distinguishing normal/AD brain MRI slices with improved accuracy utilizing the T2-modality. This scheme consists following phases: (i) Brain MRI collection and preprocessing, (ii) Deep feature extraction with the chosen scheme, (iii) Handcrafted feature extraction, (iv) Whale Algorithm (WA) based feature reduction and serial integration, and (v) binary classification using five-fold cross-validation. A total of 2000 MRI slices (1000 normal and 1000 AD class) are examined during this task using images collected from Alzheimer’s Disease Neuroimaging Initiative (ADNI). This study confirms that the proposed scheme provides a classification accuracy of > 98% when applied with the K-Nearest Classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  • Abdel-Basset M, Manogaran G, El-Shahat D, Mirjalili S (2018) Integrating the whale algorithm with tabu search for quadratic assignment problem: a new approach for locating hospital departments. Appl Soft Comput 73:530–546

    Article  Google Scholar 

  • Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ et al (2019) Automated detection of Alzheimer’s disease using brain MRI images–a study with various feature extraction techniques. J Med Syst 43(9):1–14

    Article  Google Scholar 

  • Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput 22(1):1–15

    Article  Google Scholar 

  • Alves GS, Kumar S, Sudo FK (2022) The interplay between long-term psychiatric disorders and age-related brain changes. Front Psychiatry. https://doi.org/10.3389/fpsyt.2022.898023

    Article  PubMed  PubMed Central  Google Scholar 

  • Balasubramaniam S, Satheesh Kumar K, Kavitha V, Prasanth A, Sivakumar TA (2022) Feature selection and dwarf mongoose optimization enabled deep learning for heart disease detection. Comput Intell Neurosci. https://doi.org/10.1155/2022/2819378

    Article  PubMed  PubMed Central  Google Scholar 

  • Beheshti I, Demirel H, Matsuda H (2017) Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Comput Biol Med 83:109–119

    Article  PubMed  Google Scholar 

  • Braskie MN, Toga AW, Thompson PM (2013) Recent advances in imaging alzheimer’s disease. J Alzheimers Dis 33(1):S313–S327

    PubMed  PubMed Central  Google Scholar 

  • Chui KT, Gupta BB, Alhalabi W, Alzahrani FS (2022) An MRI scans-based Alzheimer’s disease detection via convolutional neural network and transfer learning. Diagnostics 12(7):1531

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhakhinamoorthy C, Mani SK, Mathivanan SK, Mohan S, Jayagopal P, Mallik S, Qin H (2023) Hybrid whale and gray wolf deep learning optimization algorithm for prediction of Alzheimer’s disease. Mathematics 11(5):1136

    Article  Google Scholar 

  • Dimitriadis SI, Liparas D, Tsolaki MN (2018) Random Forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (ADNI) database. J Neurosci Methods 302:14–23

    Article  CAS  PubMed  Google Scholar 

  • Ghazal TM, Abbas S, Munir SA, Khan M, Ahmad M, Issa G, Binish Zahra S, Adnan Khan M, Kamrul Hasan M (2022) Alzheimer disease detection empowered with transfer learning. Comput Mater Contin 70(3):5005–5019

    Google Scholar 

  • Gudigar A, Raghavendra U, Devasia T, Nayak K, Danish SM et al (2019) Global weighted LBP based entropy features for the assessment of pulmonary hypertension. Pattern Recognit Lett 125:35–41

    Article  ADS  Google Scholar 

  • Haaksma ML, Vilela LR, Marengoni A, Calderón-Larrañaga A, Leoutsakos JS et al (2017) Comorbidity and progression of late onset Alzheimer’s disease: a systematic review. PLoS ONE 12(5):e0177044

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu F, Zhou M, Li M, Bian K (2022) Joint feature selection of power load in time domain and frequency domain based on whale optimization algorithm. Int Trans Electr Energy Syst. https://doi.org/10.1155/2022/4139379

    Article  Google Scholar 

  • Hussien AG, Hassanien AE, Houssein EH, Bhattacharyya S, Amin M (2019) S-shaped binary whale optimization algorithm for feature selection. Recent trends in signal and image processing. Springer, Singapore, pp 79–87

    Chapter  Google Scholar 

  • Islam J, Zhang Y (2017) A novel deep learning based multi-class classification method for Alzheimer’s disease detection using brain MRI data. In: Brain informatics: international conference, BI 2017, Beijing, China, November 16–18, 2017, Proceedings. Springer International Publishing, pp 213–222

  • Jayachitra S, Prasanth A (2021) Multi-feature analysis for automated brain stroke classification using weighted Gaussian naïve Bayes classifier. J Circuits Syst Comput 30(10):2150178

    Article  Google Scholar 

  • Kadry S, Rajinikanth V, González Crespo R, Verdú E (2022) Automated detection of age-related macular degeneration using a pre-trained deep-learning scheme. J Supercomput 78(5):7321–7340

    Article  Google Scholar 

  • Khan MA, Rajinikanth V, Satapathy SC, Taniar D, Mohanty JR et al (2021) VGG19 network assisted joint segmentation and classification of lung nodules in CT images. Diagnostics 11(12):2208

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu B, Li HX, Chang ZK, Li L, Chen NX, Zhu ZC et al (2022) A practical Alzheimer’s disease classifier via brain imaging-based deep learning on 85,721 samples. J Big Data 9(1):1–22

    Article  Google Scholar 

  • Mafarja M, Mirjalili S (2018) Whale optimization approaches for wrapper feature selection. Appl Soft Comput 62:441–453

    Article  Google Scholar 

  • Malik GA, Robertson NP (2017) Treatments in Alzheimer’s disease. J Neurol 264(2):416–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason LM, Clarke AR, Barry RJ (2022) Age-related changes in the EEG in an eyes-open condition: II. Subtypes of AD/HD. Int J Psychophysiol 174:83–91

    Article  PubMed  Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Saremi S, Mirjalili S (2020) Whale optimization algorithm: theory, literature review, and application in designing photonic crystal filters. Nature-inspired optimizers. Springer, Cham, pp 219–238

    Google Scholar 

  • Murugesan S, Bhuvaneswaran RS, Nehemiah HK, Sankari SK, Jane YN (2021) Feature selection and classification of clinical datasets using bioinspired algorithms and super learner. Comput Math Methods Med. https://doi.org/10.1155/2021/6662420

    Article  PubMed  PubMed Central  Google Scholar 

  • Odusami M, Maskeliūnas R, Damaševičius R (2022) An intelligent system for early recognition of Alzheimer’s disease using neuroimaging. Sensors 22(3):740

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Oh SL, Jahmunah V, Arunkumar N, Abdulhay EW, Gururajan R et al (2021) A novel automated autism spectrum disorder detection system. Complex Intell Syst 7(5):2399–2413

    Article  Google Scholar 

  • Parmar H, Nutter B, Long L, Antani S, Mitra S (2020) Spatiotemporal feature extraction and classification of Alzheimer’s disease using deep learning 3D-CNN for fMRI data. J Med Imaging 7:056001

    Article  Google Scholar 

  • Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC et al (2010) Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74(3):201–209

    Article  PubMed  PubMed Central  Google Scholar 

  • Puente-Castro A, Fernandez-Blanco E, Pazos A, Munteanu CR (2020) Automatic assessment of Alzheimer’s disease diagnosis based on deep learning techniques. Comput Biol Med 120:103764

    Article  PubMed  Google Scholar 

  • Rajinikanth V, Kadry S (2021) Development of a framework for preserving the disease-evidence-information to support efficient disease diagnosis. Int J Data Warehous Min (IJDWM) 17(2):63–84

    Article  Google Scholar 

  • Rajinikanth V, Aslam SM, Kadry S (2021) Deep learning framework to detect ischemic stroke lesion in brain MRI slices of flair/DW/T1 modalities. Symmetry 13(11):2080

    Article  ADS  Google Scholar 

  • Rajinikanth V, Kadry S, Taniar D, Kamalanand K, Elaziz MA et al (2022) Detecting epilepsy in EEG signals using synchro-extracting-transform (SET) supported classification technique. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-021-03676-x

    Article  Google Scholar 

  • Rajinikanth V, Kadry S, Moreno-Ger P (2023) ResNet18 supported inspection of tuberculosis in chest radiographs with integrated deep, LBP, and DWT features. Int J Interact Multimedia Artif Intell 8(Regular Issue, 2):38–46. https://doi.org/10.9781/ijimai.2023.05.004

    Article  Google Scholar 

  • Ramzan F, Khan MUG, Rehmat A, Iqbal S, Saba T et al (2019) A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state fmri and residual neural networks. J Med Syst 44:37

    Article  PubMed  Google Scholar 

  • Roy PK, Singh A (2023) COVID-19 disease prediction using weighted ensemble transfer learning. Int J Interact Multimedia Artif Intell 8(1):13–22. https://doi.org/10.9781/ijimai.2023.02.006. (Special issue on AI-driven algorithms and applications in the dynamic and evolving environments)

    Article  Google Scholar 

  • Savaş S (2022) Detecting the stages of Alzheimer’s disease with pre-trained deep learning architectures. Arab J Sci Eng 47(2):2201–2218

    Article  Google Scholar 

  • Sekar J, Aruchamy P, Sulaima Lebbe Abdul H, Mohammed AS, Khamuruddeen S (2022) An efficient clinical support system for heart disease prediction using TANFIS classifier. Comput Intell 38(2):610–640

    Article  Google Scholar 

  • Sharma R, Goel T, Tanveer M, Murugan R (2022) FDN-ADNet: fuzzy LS-TWSVM based deep learning network for prognosis of the Alzheimer’s disease using the sagittal plane of MRI scans. Appl Soft Comput 115:108099

    Article  Google Scholar 

  • Singh V, Jain D (2023) A hybrid parallel classification model for the diagnosis of chronic kidney disease. Int J Interact Multimedia Artif Intell 8(Regular Issue, 2):14–28. https://doi.org/10.9781/ijimai.2021.10.008

    Article  Google Scholar 

  • Smith LC, Turcotte DL, Isacks BL (1998) Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol Process 12(2):233–249

    Article  ADS  Google Scholar 

  • Sree V, Mapes J, Dua S, Lih OS, Koh JE et al (2021) A novel machine learning framework for automated detection of arrhythmias in ECG segments. J Ambient Intell Humaniz Comput 12(11):10145–10162

    Article  Google Scholar 

  • Sridhar C, Lih OS, Jahmunah V, Koh JE, Ciaccio E et al (2021) Accurate detection of myocardial infarction using nonlinear features with ECG signals. J Ambient Intell Humaniz Comput 12(3):3227–3244

    Article  Google Scholar 

  • Stonnington CM, Chu C, Klöppel S, Jack CR, Ashburner J et al (2010) Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. Neuroimage 5(4):1405–1413

    Article  Google Scholar 

  • Striegl J, Gotthardt M, Loitsch C, Weber G (2022) Investigating the usability of voice assistant-based CBT for age-related depression. International conference on computers helping people with special needs. Springer, Cham, pp 432–441

    Chapter  Google Scholar 

  • Vijayakumar K, Rajinikanth V, Kirubakaran MK (2022) Automatic detection of breast cancer in ultrasound images using Mayfly algorithm optimized handcrafted features. J X-Ray Sci Technol 30:751–766

    CAS  Google Scholar 

  • Wang T, Qiu RG, Yu M (2018) Predictive modeling of the progression of Alzheimer’s disease with recurrent neural networks. Sci Rep 8:9161

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  PubMed  Google Scholar 

  • Zhang J, Liu M, An L, Gao Y, Shen D (2017) Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images. IEEE J Biomed Health Inform 21(6):1607–1616

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén González Crespo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to report regarding the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The affiliations of all authors were published incorrectly and have now been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadry, S., Jessy, V.E., Rajinikanth, V. et al. Automatic classification of normal/AD brain MRI slices using whale-algorithm optimized hybrid image features. J Ambient Intell Human Comput 14, 14237–14248 (2023). https://doi.org/10.1007/s12652-023-04662-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-023-04662-1

Keywords

Navigation