Skip to main content
Log in

Noise reduction in microarray gene expression data based on spectral analysis

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In genetic research, microarray chip carries thousands of genome expression profiles which allow biologists to analyze some of the developmental processes of life, such as biological reactions due to specific influences and so on. A main challenge of DNA microarray analysis is to separate the main gene expression from experimental noise. In order to ensure the accuracy of the following analysis, an effective noise filtering scheme is needed. In this paper, we propose a strategy to remove noise from gene expression profiles based on an autoregressive model based power spectrum analysis combined with singular spectrum analysis. This method helps us to determine the power spectrum effectively such that we can easily reconstruct the noise filtered time series signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bao F, Wang X, Tao Z, Wang Q, Du S (2009) Adaptive extraction of modulation for cavitation noise. J Acoust Soc Am 126:3106–3113

    Article  Google Scholar 

  2. Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:E5

    Article  Google Scholar 

  3. Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental-data. Physica D 20(2–3):217–236

    Article  MathSciNet  MATH  Google Scholar 

  4. Choong MK, Charbit M, Yan H (2009) Autoregressive-model-based missing value estimation for dna microarray time series data. IEEE Trans Inf Technol Biomed 13(1):131–137

    Article  Google Scholar 

  5. Choong MK, Levy D, Yan H (2009) Study of microarray time series data based on forward-backward linear prediction and singular value decomposition. Int J Data Min Bioinforma 3(2):145–159

    Article  Google Scholar 

  6. Dequeant ML, Glynn E, Gaudenz K, Wahl M, Chen J, Mushegian A, Pourquie O (2006) A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314(5805):1595–1598

    Article  Google Scholar 

  7. Dequeant ML, Pourquie O (2008) Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 9(5):370–382

    Article  Google Scholar 

  8. Draghici S (2003) Data analysis tools for DNA microarrays. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  9. Gan X, Liew AW, Yan H (2006) Microarray missing data imputation based on a set theoretic framework and biological knowledge. Nucleic Acids Res 34(5):1608–1619

    Article  Google Scholar 

  10. Liu L, Hawkins DM, Ghosh S, Young SS (2003) Robust singular value decomposition analysis of microarray data. Proc Natl Acad Sci USA 100(23):13167–13172

    Article  MathSciNet  MATH  Google Scholar 

  11. Mills JC, Roth KA, Cagan RL, Gordon JI (2001) Dna microarrays and beyond: completing the journey from tissue to cell. Nat Cell Biol 3(8):E175–E178

    Article  Google Scholar 

  12. Ovacik MA, Sukumaran S, Almon RR, Dubois DC, Jusko WJ, Androulakis IP (2010) Circadian signatures in rat liver: from gene expression to pathways. BMC Bioinforma 11(1):540

    Article  Google Scholar 

  13. Porat B (1994) Digital processing of random signals: theory and methods. Prentice-Hall, London

  14. Schott JR (2005) Matrix analysis for statistics, 2nd edn. Wiley series in probability and statistics. Wiley-Interscience, Hoboken

  15. Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time-series. Physica D 35:395–424

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu S, Liew AW, Smith DK (2008) Spectral analysis of microarray gene expression time series data of Plasmodium falciparum. Int J Bioinforma Res Appl 4(3):337–349

    Article  Google Scholar 

  17. Yeung LK, Szeto LK, Liew AW, Yan H (2004) Dominant spectral component analysis for transcriptional regulations using microarray time-series data. Bioinformatics 20(5):742–749

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Hong Kong Grant Research Council (Project CityU 122607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian T. Y. Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, V.T.Y., Yan, H. Noise reduction in microarray gene expression data based on spectral analysis. Int. J. Mach. Learn. & Cyber. 3, 51–57 (2012). https://doi.org/10.1007/s13042-011-0039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-011-0039-7

Keywords

Navigation