Skip to main content
Log in

Approximation of polygonal fuzzy neural networks in sense of Choquet integral norms

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Approximation capabilities are important and primary properties of neural networks and fuzzy neural networks (FNNs). Neural networks have been successfully applied in many fields since they can work as approximators in nature. Many scholars research FNNs’ approximation abilities for continuous fuzzy functions. It is concluded that FNNs can work as approximators for continuous fuzzy functions if the fuzzy functions satisfy some specified conditions. However, the problem whether FNNs can work as approximators for discontinuous fuzzy functions is not solved completely until now. In this work, we focus on the approximation of polygonal FNN for discontinuous fuzzy functions in sense of Choquet integral norms. We first introduce the Choquet integral norms in sub-additive fuzzy measure. Then the universal approximation of polygonal FNNs for fuzzy valued functions in sense of Choquet integral norms is analyzed in this paper. It is proved that the polygonal FNNs can work as approximators for fuzzy valued functions in the sense of Choquet integral norms with respect to sub-additive fuzzy measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Zheng H, Wang H (2012) Improving pattern discovery and visualisation with self-adaptive neural networks through data transformations. Int J Mach Learn Cybern 3(3):173–182

    Article  Google Scholar 

  2. Sarlin P (2012) Visual tracking of the millennium development goals with a fuzzified self-organizing neural network. Int J Mach Learn Cybern 3(3):233–245

    Article  Google Scholar 

  3. Buckley JJ, Hayashi Y (1994) Can fuzzy neural nets approximate continuous fuzzy functions? Fuzzy Sets Syst 61:43–52

    Article  MATH  MathSciNet  Google Scholar 

  4. Liu PY, Li HX (2005) Approximation analysis of feed forward regular fuzzy neural networks with two hidden layers. Fuzzy Sets Syst 150:373–396

    Article  MATH  Google Scholar 

  5. Liu PY (2002) Fuzzy neural networks theory and application research, Department of Mathematics, Beijing Normal University mathematics research Institute

  6. Huang H, Wu CX (2009) Approximation capabilities of multilayer fuzzy neural networks on the set of fuzzy-valued functions. Inf Sci 179(16):2762–2773

    Article  MATH  Google Scholar 

  7. Huang H, Wu CX (2009) Approximation of level continuous fuzzy-valued functions by multilayer regular fuzzy neural networks. Math Comput Model 49:1311–1318

    Article  MATH  Google Scholar 

  8. Huang H, Wu CX (2011) Approximation of fuzzy functions by regular fuzzy neural networks. Fuzzy Sets Syst 177(1):60–79

    Article  MATH  Google Scholar 

  9. Zhao FX, Li HX (2006) Approximation of regular fuzzy neural networks to seguno-integrable functions. Acta Mathematicae Appli- Catae Sinica 19(1):39–45

    Google Scholar 

  10. Zhao FX, Li HX (2004) Approximation of regular fuzzy neural networks to L-integrable functions. Prog Nat Sci 14(9):1025–1031

    Google Scholar 

  11. Li J, Gao SH, Chen B (2010) Approximation of fuzzy neural networks to fuzzy-valued measurable function. Adv Intell Soft Comput 82:351–358

    Article  Google Scholar 

  12. Lovassy R, László TK, Gál L (2010) Function approximation performance of fuzzy neural networks. Acta Polytechnica Hungarica 7(4):25–38

    Google Scholar 

  13. Gál L, Lovassy R, Kóczy L T, Function approximation performance of fuzzy neural networks based on frequently used fuzzy operations and a pair of new trigonometric norms. IEEE International Conference on Fuzzy Systems, 2010, pp.1–8

  14. Liu PX (2002) A new fuzzy neural network and its approximation capabilities. Sci China (Series E) 32(1):76–86

    Google Scholar 

  15. He CM, Ye YP, Xu WH (2009) Universal approximation of fuzzy functions by polygonal fuzzy neural networks with general inputs. Pattern Recogn Artif Intell 22(3):481–487

    Google Scholar 

  16. Wang GJ, Li XP (2011) Universal approximation of polygonal fuzzy neural networks in sense of K-integral norms. Sci China Inf Sci 54(11):2307–2323

    Article  MATH  MathSciNet  Google Scholar 

  17. Choquet G (1955) Theory of capacities. Ann Inst Fouries 5:131–295

    Article  MathSciNet  Google Scholar 

  18. Murofushi T, Sugeno M (1989) An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Set Syst 129:201–227

    Article  MathSciNet  Google Scholar 

  19. Song J, Li J (2003) Regularity of null-additive fuzzy measure on metric space. Int J Gen Syst 33(3):271–279

    Article  MathSciNet  Google Scholar 

  20. Puyin L, Hongxi L (2007) Symmetric polygonal fuzzy number space. J Fuzzy Math 15(1):27–42

    MATH  MathSciNet  Google Scholar 

  21. Báez-Sánchez AD, Morettib AC, Rojas- Medar MA (2012) On polygonal fuzzy sets and numbers. Fuzzy Sets Syst 209:54–65

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61163040 and 61261005),the Science Foundation of Jiangxi Provincial Department of Education (Grant No. GJJ12323) and the Foundation of East China Jiaotong University (Grant No. 09102018).

The authors would like to thank anonymous referees for their valuable comments to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunmei He.

Appendix proof of theorems

Appendix proof of theorems

1.1 Proof of theorem 4.1

Because \( \left( {F_{0}^{c} (R),D} \right) \)is a complete disjunctive metric space, for arbitrary \( \tilde{X} \in F_{0}^{c} (R),i \in N \), there exist an enumerable dense set \( \left\{ {\tilde{A}_{i} ,i \in N} \right\} \) such that \( D(\tilde{X},\tilde{A}_{i} ) < \varepsilon_{0} \). Let

$$ T_{1} = \left\{ {x \in T|D(F(x),\tilde{A}_{1} ) < \varepsilon } \right\}, $$
$$ T_{2} = \left\{ {x \in T|D(F(x),\tilde{A}_{1} ) \ge \varepsilon ,D(F(x),\tilde{A}_{2} ) < \varepsilon } \right\}, \cdots , $$
$$ \begin{gathered} T_{n} = \{ x \in T|D(F(x),\tilde{A}_{i} ) \ge \varepsilon ,i = 1, \cdots ,n - 1, \hfill \\ D(F(x),\tilde{A}_{n} ) < \varepsilon \} \hfill \\ \end{gathered} $$

where \( \mathop \cup \limits_{i \in N} T_{i} = T,T_{i} \cap T_{j} \ne \Upphi \) (i ≠ j) and \( \mu (T) = \mu (\mathop \cup \limits_{i \in N} T_{i} ) < + \infty \). Then there exist \( d_{0} \in N \) such that \( \mu (\mathop \cup \limits_{{i > d_{0} }} T_{i} ) < \varepsilon_{0} \). Let

$$ S\left( x \right) = \sum\limits_{i = 0}^{{d_{0} }} {\left( {a_{i} - a_{i - 1} } \right)} \chi_{{A_{i} (x)}} \left( {x \in T} \right), $$

where \( T_{0} = \mathop \cup \limits_{{i > d_{0} }} T_{i} ,a_{0} = 0,0 < a_{1} \le a_{2} \le \cdots \le a_{n} .\{ T_{0} ,T_{1} , \cdots ,T_{{d_{0} }} \} \), is a finite dissection of T, S is the fuzzy-valued simple function on T, and

$$ \begin{gathered} \Updelta (F,S) = (C)\int\limits_{T} {[D (F (x ),S (x ) )]} d\mu \hfill \\ = (C )\int\limits_{{\mathop \cup \limits_{i = 0}^{{d_{0} }} T}} { [D (F (x ) ,S (x ) ) ]} d\mu \hfill \\ \le \sum\limits_{i = 1}^{{d_{0} }} { (C )\int\limits_{{T_{i} }} {D (F (x ) ,S (x ) )} d\mu } \hfill \\ + \int\limits_{{T_{0} }} {D (F_{2} (x )+ F_{3} (x ) )} d\mu \hfill \\ \le \sum\limits_{i = 1}^{{d_{0} }} { (C )\int\limits_{{T_{i} }} {D (F (x ) ,S (x ) )} d\mu } + \varepsilon_{0} \hfill \\ \le \varepsilon_{0} [\mu (T )+ 1 ].\hfill \\ \end{gathered} $$

Suppose \( \varepsilon \to 0,{\text{then}}\;\Updelta \left( {F,S} \right) \to 0, \) that is, for arbitrary \( \varepsilon > 0,\;\Updelta \left( {F,S} \right) < \varepsilon \) hold. The proof is completed.

1.2 Proof of theorem 4.2

(1) Let

$$ S\left( x \right) = \sum\limits_{k = 1}^{q} {\left( {a_{k} - a_{k - 1} } \right)} \chi_{k} \left( {x \in T} \right) , $$

Where \( a_{0} = 0,0 < a_{1} \le a_{2} \le \cdots \le a_{n} . \) For \( \chi_{{A_{i} (x)}} \) is a non- negative measurable function, from lemma 4.1, we can conclude that, for arbitrary \( \varepsilon_{0} > 0, \) there exist one closed set \( L_{k} \subseteq T \) such that

$$ \mu \left( {T - L_{k} } \right) \le \varepsilon_{0} $$

and \( \chi_{{A_{i} (x)}} \) is continue on L k . Therefore there exist a Tauber–Wener function \( \sigma ,\,t_{k} \subseteq N,\,v_{k1}^{'} ,v_{k2}^{'} , \cdots ,v_{{kt_{k} }}^{'} ,\,\theta_{k1}^{'} ,\theta_{k2}^{'} , \cdots ,\theta_{{kt_{k} }}^{'} \in R, \) and \( u_{k}^{'} (1),u_{k}^{'} (2), \cdots ,\,u_{k}^{'} (t_{k} ) \in R^{n} \) such that

$$ \left| {\chi_{{T_{k} (x)}} - \sum\limits_{j = 1}^{{t_{k} }} {v_{kj}^{'} \cdot \sigma \left( { < u_{k}^{'} (j),x > + \theta_{kj}^{'} } \right)} } \right| < \varepsilon_{0} (x \in L_{k} ). $$

If let \( L = \mathop \cap \limits_{k = 1}^{q} L_{k} \), then \( T = L \cup (T - L) \), where

$$ \mu \left( {T - L} \right) = \mu \left( {T - \mathop \cap \limits_{k = 1}^{q} L_{k} } \right) = \mu \left( {\mathop \cup \limits_{k = 1}^{q} (T - L_{k} )} \right) \le \sum\limits_{k = 1}^{q} {\mu \left( {T - L_{k} } \right)} . $$

Because \( \mu \left( {T - L_{k} } \right) < \varepsilon_{0} \), there exist ɛ 1 > 0 such that \( \mu \left( {T - L} \right) < \varepsilon_{1} \). Suppose \( t = \sum\limits_{k = 1}^{q} {t_{k} } \), denote \( \beta_{k} = \sum\nolimits_{r = 1}^{k - 1} {t_{r} } ,\beta_{1} = 0 \) For \( k = 1,2, \cdots ,q,j = 1,2, \cdots ,t, \) define

$$ v_{kj} = \left\{ {\begin{array}{*{20}c} {v'_{{k(j - \beta_{k} )}} ,\beta_{k} < j \le \beta_{k + 1} ,} \\ {0,\;\;\;{\text{otherwise}}.} \\ \end{array} } \right. $$
$$ u_{k} (j) = \left\{ {\begin{array}{*{20}l} u'_{k} (j - \beta_{k} ), & \beta_{k} < j \le \beta_{k + 1} , \\ 0 & {\text{otherwise}}. \end{array} } \right. $$
$$ \theta_{kj} = \left\{ {\begin{array}{*{20}l} \theta'_{k(j - \beta_{k})}, & \beta_{k}<j \le \beta_{k + 1}, \\ 0 &{\text{otherwise}} \end{array}}\right. $$

Let

$$ H\left( x \right) = \sum\limits_{k = 1}^{q} {\tilde{A}_{k} } \cdot \sum\limits_{j = 1}^{t} {v_{kj} \cdot \sigma \left( { < u_{k} (j),x > + \theta_{kj} } \right)} , $$

Then \( H \in H_{0} [\sigma ] \) is the fuzzy measure space and for \( \forall k = \left\{ {1,2, \cdots ,q} \right\}, \)

$$ \begin{gathered} \sum\limits_{j = 1}^{t} {v_{kj} \cdot \sigma \left( { < u_{k} (j),x > + \theta_{kj} } \right)} \hfill \\ \; = \sum\limits_{j = 1}^{t} {v'_{kj} \cdot \sigma \left( { < u'_{k} (j),x > + \theta '_{kj} } \right).} \hfill \\ \end{gathered} $$
$$ \begin{gathered} \Updelta (H,S) = (C)\int\limits_{T} {D(H(x),S(x))d\mu } = (C)\int\limits_{L \cup (T - L)} {D(H(x),S(x))} d\mu \hfill \\ \le (C)\int\limits_{L \cup (T - L)} {D\left( {\sum\limits_{k = 1}^{q} {\tilde{A}_{k} \cdot \sum\limits_{j = 1}^{t} {v_{kj} \cdot \sigma \left( { < u_{k} (j),x > + \theta_{kj} } \right)} ,\sum\limits_{k = 1}^{q} {(a_{k} - a_{k - 1} )\chi_{k} } } } \right)} d\mu \hfill \\ \le \sum\limits_{k = 1}^{q} {(\tilde{A}_{k} \vee \left| {a_{k} - a_{k - 1} } \right|) \cdot } (C)\int\limits_{L \cup (T - L)} {D\left( {\sum\limits_{j = 1}^{t} {v_{kj} \cdot \sigma \left( { < u_{k} (j),x > + \theta_{kj} } \right),\chi_{k} } } \right)} d\mu \hfill \\ \le \sum\limits_{k = 1}^{q} {(\tilde{A}_{k} \vee \left| {a_{k} - a_{k - 1} } \right|) \cdot \left( {(C)\int\limits_{L} {D\left( {\sum\limits_{j = 1}^{t} {v_{kj} \cdot \sigma \left( { < u_{k} (j),x > + \theta_{kj} } \right),\chi_{k} } } \right)} d\mu + } \right.} \hfill \\ \left. {\;(C)\int\limits_{(T - L)} {D\left( {\sum\limits_{j = 1}^{t} {v_{kj} \cdot \sigma \left( { < u_{k} (j),x > + \theta_{kj} } \right),\chi_{k} } } \right)} d\mu } \right) \hfill \\ \le \sum\limits_{k = 1}^{q} {(\tilde{A}_{k} \vee \left| {a_{k} - a_{k - 1} } \right|) \cdot } \left( {(C)\int\limits_{L} {\varepsilon_{0} } d\mu } \right. + \hfill \\ \;\,\;\left. {(C)\int\limits_{(T - L)} {D\left( {\sum\limits_{j = 1}^{t} {v_{kj} \cdot \sigma \left( { < u_{k} (j),x > + \theta_{kj} } \right),\chi_{k} } } \right)} d\mu } \right) \hfill \\ \end{gathered} $$

For \( \mu \left( {T - L} \right) < \varepsilon_{1} \), there exist ɛ 2 > 0 such that \( (C)\int_{T - L} {\left[ {D\left( {\sum\limits_{j = 1}^{t} {v_{kj} \cdot \sigma \left( { < u_{k} (j) + \theta_{kj} > } \right),\chi_{k} } } \right)} \right]d\mu < \varepsilon_{2} } \). Therefore

$$ \begin{gathered} \Updelta (H,S) \le \sum\limits_{k = 1}^{q} {(\tilde{A}_{k} \vee \left| {a_{k} - a_{k - 1} } \right|) \cdot \left( {(C)\int\limits_{L} {\varepsilon_{0} } d\mu + } \right.} \hfill \\ \left. {\;\;\;\;(C)\int\limits_{(T - L)} {D\left( {\sum\limits_{j = 1}^{t} {v_{kj} \cdot \sigma \left( { < u_{k} (j),x > + \theta_{kj} } \right),\chi_{k} } } \right)} d\mu } \right) \hfill \\ \; \le \sum\limits_{k = 1}^{q} {(\tilde{A}_{k} \vee \left| {a_{k} - a_{k - 1} } \right|) \cdot } \left( {(C)\int\limits_{L} {\varepsilon_{0} } d\mu + \varepsilon_{2} } \right) \hfill \\ \; \le \sum\limits_{k = 1}^{q} {(\tilde{A}_{k} \vee \left| {a_{k} - a_{k - 1} } \right|) \cdot } \left( {\varepsilon_{0} \cdot \mu (L) + \varepsilon_{2} } \right) \hfill \\ \end{gathered} $$

That is to say, there exist ɛ > 0 such that \( \Updelta \left( {H,S} \right) < \varepsilon \). The proof of (1) is completed.

(2) We can conclude (2) from theorem 4.1 and (1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, C. Approximation of polygonal fuzzy neural networks in sense of Choquet integral norms. Int. J. Mach. Learn. & Cyber. 5, 93–99 (2014). https://doi.org/10.1007/s13042-013-0154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-013-0154-8

Keywords

Navigation