Skip to main content
Log in

Image change detection based on an improved rough fuzzy c-means clustering algorithm

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

An unsupervised change detection method based on an improved rough fuzzy c-means clustering method (SRFPCM) for synthetic aperture radar and optical remote sensing images is proposed. SRFPCM incorporates the local spatial information and gray level information in a novel fuzzy way, aiming at guaranteeing noise insensitiveness and image detail preservation. Inspired by the idea of a robust fuzzy local information c-means clustering algorithm, this new algorithm can overcome the disadvantages of rough fuzzy c-means clustering algorithm and enhance the clustering performance at the same time. SRFPCM is employed to cluster the difference image into two clusters (changed and unchanged regions) and get the change map. Experimental results confirm the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cihlar J, Pultz TJ, Gray AL (1992) Change detection with synthetic aperture radar. Int J Remote Sens 13(3):401–414

    Article  Google Scholar 

  2. Bruzzone L, Serpico SB (1997) An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images. IEEE Trans Geosci Remote Sens 35(4):858–867

    Article  Google Scholar 

  3. Bruzzone L, Prieto DF (2002) A adaptive semiparametric and con-text-based approach to unsupervised change detection in multi temporal remote-sensing images. IEEE Trans Image Process 11(4):452–466

    Article  Google Scholar 

  4. Nielsen AA (2007) The regularized iteratively reweighted MAD method for change detection in multi and hyperspectral data. IEEE Trans Image Process 16(2):463–478

    Article  MathSciNet  Google Scholar 

  5. Bazi Y, Bruzzone L, Melgani F (2005) An unsupervised approach based on the generalized Gaussian model to automatic change detection in multi-temporal SAR images. IEEE Trans Geosci Remote Sens 43(4):874–887

    Article  Google Scholar 

  6. Bovolo F, Bruzzone L (2005) A detail-preserving scale-driven approach to change detection in multi temporal SAR images. IEEE Trans Geosci Remote Sens 43(12):2963–2972

    Article  Google Scholar 

  7. Bujor F, Trouvé E, Valet L, Nicolas JM, Rudant JP (2004) Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images. IEEE Trans Geosci Remote Sens 42(10):2073–2084

    Article  Google Scholar 

  8. Chatelain F, Tourneret JY, Inglada J (2008) Change detection in multisensor SAR images using bivariate Gamma distributions. IEEE Trans Image Process 17(3):249–258

    Article  MathSciNet  Google Scholar 

  9. Inglada J, Mercier G (2007) A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans Geosci Remote Sens 45(5):1432–1445

    Article  Google Scholar 

  10. Marchesi S, Bovolo F, Bruzzone L (2010) A context-sensitive technique robust to registration noise for change detection in VHR multispectral images. IEEE Trans Image Process 19(7):1877–1889

    Article  MathSciNet  Google Scholar 

  11. Robin A, Moisan L, Hegarat-Mascle SL (2010) An a-contrario approach for subpixel change detection in satellite imagery. IEEE Trans Pattern Anal Mach Intell 32(11):1977–1993

    Article  Google Scholar 

  12. Bosc M, Heitz F, Armspach JP, Namer I, Gounot D, Rumbach L (2003) Automatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution. Neuroimage 20(2):643–656

    Article  Google Scholar 

  13. Rey D, Subsol G, Delingette H, Ayache N (2002) Automatic detection and segmentation of evolving processes in 3-D medical images: application to multiple sclerosis. Med Image Ana l6(2):163–179

    Article  Google Scholar 

  14. Tsai DM, Lai SC (2009) Independent component analysis-based background subtraction for indoor surveillance. IEEE Trans Image Process 18(1):158–167

    Article  MathSciNet  Google Scholar 

  15. Ho SS, Wechsler H (2010) A martingale framework for detecting changes in data streams by testing exchangeability. IEEE Trans Pattern Anal Mach Intell 32(12):2113–2127

    Article  Google Scholar 

  16. Bruzzone L, Fernández Prieto D (2000) Automatic analysis of the difference image for unsupervised change detection. IEEE Trans Geosci Remote Sens 38(3):1171–1182

    Article  Google Scholar 

  17. Gong MG, Zhou ZQ, Ma JJ (2012) Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans Image Process 21(4):2141–2151

    Article  MathSciNet  Google Scholar 

  18. Bazi Y, Bruzzone L, Melgani F (2005) An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans Geosci Remote Sens 43(4):874–887

    Article  Google Scholar 

  19. Francesca B, Lorenzo B (2005) A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans Geosci Remete Sens 43(12):2963–2972

    Article  Google Scholar 

  20. Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14(3):294–337

    Article  MathSciNet  Google Scholar 

  21. Jain AK, Murty MN, Flyn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  22. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithm. Plenum, New York

    Book  Google Scholar 

  23. Yeung D, Wang X (2002) Improving performance of similarity-based clustering by feature weight learning. IEEE Trans Pattern Anal Mach Intell 24(4):556–561

    Article  MathSciNet  Google Scholar 

  24. Wang X, Wang Y, Wang L (2004) Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recogn Lett 25(10):1123–1132

    Article  Google Scholar 

  25. Chattopadhyay S, Pratihar DK, De Sarkar SC (2011) A comparative study of fuzzy C-means algorithm and entropy-based fuzzy clustering algorithm. Comput Inf 30(4):701–720

    Google Scholar 

  26. Jena PK, Chattopadhyay S (2012) Comparative study of fuzzy k-nearest neighbor and fuzzy c-means algorithms. Int J Comput Appl 57(7):22–32

    Google Scholar 

  27. Panda S, Sahoo S, Jena PK, Chattopadhyay S (2012) Comparing Fuzzy C-means and K-means clustering techniques: a comprehensive study. In: Wyld DC, Zizka J, Nagamalai D (eds) Proceedings of 2nd International Conference on Computer Science, Engineering and Applications, vol 166. Advances in Intelligent and Soft Computing (AISC), Springer, New Delhi, pp 451–460

  28. Chattopadhyay S (2013) Mathematical modelling of doctors’ perceptions in the diagnosis of depression: a novel approach. Int J Biomed Eng Technol 11(1):1–17

    Google Scholar 

  29. Krishnapuram R, Keller JM (1996) The possibilistic c-means algorithm: insights and recommandations. IEEE Trans Fuzzy Syst 4:385–393

    Article  Google Scholar 

  30. Graaff AJ, Engelbrecht AP (2012) Clustering data in stationary environments with a local network neighborhood artificial immune system. Int J Mach Learn Cybern 3(1):1–26

    Article  Google Scholar 

  31. Guo G, Chen S, Chen F (2012) Soft subspace clustering with an improved feature weight self-adjustment mechanism. Int J Mach Learn Cybern 3(1):39–49

    Article  Google Scholar 

  32. Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  33. Maji P, Pal SK (2007) Rough set based generalized fuzzy c-means algorithm and quantitative indices. IEEE Trans Syst Man Cybern B 37(6):1529–1540

    Article  Google Scholar 

  34. Krinidis S, Chatzis V (2010) A robust fuzzy local information C-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fund for Foreign Scholars in University Research and Teaching Programs (the 111 Project) (Grant No. B07048), the National Natural Science Foundation of China (Grant Nos. 61203303, 61202176, 61273317, 61272279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenping Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Jiao, L., Gong, M. et al. Image change detection based on an improved rough fuzzy c-means clustering algorithm. Int. J. Mach. Learn. & Cyber. 5, 369–377 (2014). https://doi.org/10.1007/s13042-013-0174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-013-0174-4

Keywords

Navigation