Skip to main content
Log in

Fuzzy clustering with non-local information for image segmentation

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Fuzzy c-means (FCM) algorithms have been shown effective for image segmentation. A series of enhanced FCM algorithms incorporating spatial information have been developed for reducing the effect of noises. This paper presents a robust FCM algorithm with non-local spatial information for image segmentation, termed as NLFCM. It incorporates two factors: one is the local similarity measure depending on the differences between the central pixel and its neighboring pixels in the image; the other is the non-local similarity measure depended on all pixels whose neighborhood configurations are similar to their neighborhood pixels. Furthermore, an adaptive weight is introduced to control the trade-off between local similarity measure and non-local similarity measure. The experimental results on synthetic images and real images under different types of noises show that the new algorithm is effective, and they are relatively independent to the types of noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cai W, Chen S, Zhang D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40:8–838

    Article  Google Scholar 

  2. Zhou H, Schaefer G, Sadka A, Celebi ME (2009) Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images. IEEE J Sel Top Signal Process 3:26–34

    Article  Google Scholar 

  3. Jiao L, Gong M, Wang S et al (2010) Natural and remote sensing image segmentation using memetic computing. IEEE Comput Intell Mag 5:78–91

    Article  Google Scholar 

  4. Arbelaez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Analysis Mach Intell 33:898–916

    Article  Google Scholar 

  5. Yeung D, Wang X (2002) Improving performance of similarity-based clustering by feature weight learning, IEEE Trans. Pattern Analysis Mach Intell 24:556–561

    Article  Google Scholar 

  6. Wang X, Wang Y, Wang L (2004) Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recogn Lett 25:1123–1132

    Article  Google Scholar 

  7. Kim J, Cai W, Eberl S, Feng D (2007) Real-time volume rendering visualization of dual-modality PET/CT images with interactive fuzzy thresholding segmentation. IEEE Trans Inf Technol Biomedicine 11:161–169

    Article  Google Scholar 

  8. Siang Tan K, Isa NAM (2011) Color image segmentation using histogram thresholding–fuzzy c-means hybrid approach. Pattern Recogn 44:1–15

    Article  MATH  Google Scholar 

  9. Malladi R, Sethian J, Vemuri B (1995) Shape modeling with front propagation: a level set approach, IEEE Trans. Pattern Analysis Mach Intell 27:793–800

    Google Scholar 

  10. Zhang K, Zhang L, Song H, Zhang D (2012) Re-initialization free level set evolution via reaction diffusion. IEEE Trans Image Process 21 http://arxiv.org/abs/1112.1496

  11. Adams R, Bischof L (1994) Seeded region growing, IEEE Trans. Pattern Analysis Mach Intell 16:641–647

    Article  Google Scholar 

  12. Cardinale J, Paul G, Sbalzarini IF (2012) Discrete region competition for unknown numbers of connected regions. IEEE Trans Image Process 21:3531–3545

    Article  MathSciNet  Google Scholar 

  13. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York

    Book  MATH  Google Scholar 

  14. Ji ZX, Sun QS, Xia DS (2011) A framework with modified fast FCM for brain MR images segmentation. Pattern Recogn 44:999–1013

    Article  Google Scholar 

  15. Hung CC, Kulkarni S, Kuo BC (2011) A new weighted fuzzy c-means clustering algorithm for remotely sensed image classification. IEEE J Sel Top Signal Process 5:543–553

    Article  Google Scholar 

  16. Chen L, Chen CLP, Lu M (2011) A multiple-kernel fuzzy c-means algorithm for image segmentation. IEEE Trans Syst Man Cybern Part B 41:1263–1274

    Article  Google Scholar 

  17. Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21:193–199

    Article  Google Scholar 

  18. Chen SC, Zhang DQ (2004) Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern Part B 34:1907–1916

    Article  Google Scholar 

  19. Szilágyi L, Benyó Z, Szilágyii SM, Adam HS (2003) MR brain image segmentation using an enhanced fuzzy c-means algorithm. In: 25th Annual International Conference of IEEE EMBS pp 17–21

  20. Krinidis S, Chatzis V (2010) A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 19:1328–1337

    Article  MathSciNet  Google Scholar 

  21. Liu N, Chen F, Lu M (2013) Spectral co-clustering documents and words using fuzzy K-harmonic means. Int J Mach Learn Cybernet 4:75–83. doi:10.1007/s13042-012-0077-9

    Article  Google Scholar 

  22. Ma W, Jiao L, Gong M, Li C (2013) Image change detection based on an improved rough fuzzy c-means clustering algorithm. Int J Mach Learn Cybernet. doi:10.1007/s13042-013-0174-4

    Google Scholar 

  23. Gong M, Su L, Jia M, Chen W (2013) Fuzzy clustering with modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans Fuzzy Syst. doi:10.1109/TFUZZ.2013.2249072

    Google Scholar 

  24. Gong M, Liang Y, Shi J, Ma W, Ma J (2013) Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans Image Process 22:573–584

    Article  MathSciNet  Google Scholar 

  25. Gong M, Zhou Z, Ma J (2012) Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans Image Process 21:2141–2151

    Article  MathSciNet  Google Scholar 

  26. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: Proceedings IEEE International Conference Computer Vision and Pattern Recognition, pp 60–65

  27. Mignotte M (2008) A non-local regularization strategy for image deconvolution. Pattern Recogn Lett 29:2206–2212

    Article  Google Scholar 

  28. Coupe P, Yger P, Prima S, Hellier P, Kervrann C, Barillot C (2008) An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Medical Imaging 27:425–441

    Article  Google Scholar 

  29. Moghaddam RF, Cheriet M (2011) Beyond pixels and regions: a non-local patch means (NLPM) method for content-level restoration, enhancement, and reconstruction of degraded document images. Pattern Recogn 44:363–374

    Article  Google Scholar 

  30. Vignesh R, Oh BT, Kou CJ (2010) Fast non-local means (NLM) computation with probabilistic early termination. IEEE Signal Process Lett 17:277–280

    Article  Google Scholar 

  31. Feng J, Jiao LC, Zhang X, Gong M, Sun T (2013) Robust non-local fuzzy c-means algorithm with edge preservation for SAR image segmentation. Signal Process 93:487–499

    Article  Google Scholar 

  32. Xie XL, Beni GA (1991) Validity measure for fuzzy clustering, IEEE Trans. Pattern Analysis Mach Intell 13:841–846

    Article  Google Scholar 

  33. Bezdek JC (1973) Cluster validity with fuzzy sets. Cybern Syst 3:58–73

    MATH  MathSciNet  Google Scholar 

  34. Bezdek JC (1975) Mathematical models for systematic and taxonomy. In: Proceedings of the eighth international conference on numerical taxonomy, pp 143–166

  35. Zhang D, Guo Q, Wu G, Shen D (2012) Sparse patch-based label fusion for multi-atlas segmentation. Multimodal Brain Image Analysis 7509:94–102

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the editors and anonymous reviewers for their valuable comments and helpful suggestions which greatly improved the paper’s quality. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61273317, 61202176, 61203303), the National Top Youth Talents Program of China, the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130203110011), and the Fundamental Research Fund for the Central Universities (Grant Nos. K50510020001 and K5051202053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoguo Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Tian, D., Gong, M. et al. Fuzzy clustering with non-local information for image segmentation. Int. J. Mach. Learn. & Cyber. 5, 845–859 (2014). https://doi.org/10.1007/s13042-014-0227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-014-0227-3

Keywords

Navigation