Abstract
In this paper, a hybrid population based meta-heuristic search algorithm named as gravitational search algorithm (GSA) combined with particle swarm optimization (PSO) (GSA–PSO) is proposed for the optimal designs of two commonly used analog circuits, namely, complementary metal oxide semiconductor (CMOS) differential amplifier circuit with current mirror load and CMOS two-stage operational amplifier circuit. PSO and GSA are simple, population based robust evolutionary algorithms but have the problem of suboptimality, individually. The proposed GSA–PSO based approach has overcome this disadvantage faced by both the PSO and the GSA algorithms and is employed in this paper for the optimal designs of two amplifier circuits. The transistors’ sizes are optimized using GSA–PSO in order to minimize the areas occupied by the circuits and to improve the design/performance parameters of the circuits. Various design specifications/performance parameters are optimized to optimize the transistor’s sizes and some other design parameters using GSA–PSO. By using the optimal transistor sizes, Simulation Program with Integrated Circuit Emphasis simulation has been carried out in order to show the performance parameters. The simulation results justify the superiority of GSA–PSO over differential evolution, harmony search, artificial bee colony and PSO in terms of convergence speed, design specifications and performance parameters of the optimal design of the analog CMOS amplifier circuits. It is shown that GSA–PSO based design technique for each amplifier circuit yields the least MOS area, and each designed circuit is shown to have the best performance parameters like gain, power dissipation etc., as compared with those of other recently reported literature. Still the difficulties and challenges faced in this work are proper tuning of control parameters of the algorithms GSA and PSO, some conflicting design/performance parameters and design specifications, which have been partially overcome by repeated manual tuning. Multi-objective optimization may be the proper alternative way to overcome the above difficulties.






















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Dastidar TR, Chakrabarti PP, Ray P (2005) A synthesis system for analog circuits based on evolutionary search and topological reuse. IEEE Trans Evol Comput 9(2):211–224
Medeiro F, Rodríguez-Macías R, Fernández FV, Domínguez-astro R, Huertas JL, Rodríguez-Vázquez A (1994) Global design of analog cells using statistical optimization techniques. Analog Integr Circ Sig Process 6(3):179–195
Graeb HE, Antreich KJ (2007) Analog performance space exploration by normal boundary intersection and by Fourier–Motzkin elimination. IEEE Trans Comput Aided Des Integr Circuits Syst 26(10):1733–1748
Tlelo-Cuautle E, Duarte-Villaseñor MA (2008) Evolutionary electronics: automatic synthesis of analog circuits by GAs. In: Success in evolutionary computation, series: studies in computational intelligence, vol 92, chap 8. Springer, Berlin, pp 165–188
Toumazou C, Lidgey FJ, Haigh DG (1990) Analog IC design: the current mode approach. In: IEE circuits and systems series-2, Peter Peregrinus Ltd., IET
Conn AR, Coulman PK, Haring RA, Morrill GL, Visweswariah C (1996) Optimization of custom MOS circuits by transistor sizing. In: Proceedings of ICCAD96, San Jose, pp 174–190
Nelder JA, Mead RA (1965) A simplex method for function optimization. Comput J 7(4):308–313
Land AH, Doig AG (1960) An automatic method for solving discrete programming problem. Econometrica 28:497–520
Scniederjans MJ (1995) Goal programming methodology and applications. Kluwer Publishers, Boston
Bellman R (2003) Dynamic programming, Dover Paperback Edition. Princeton University Press, Princeton
Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8:541–564
Basseur M, Talbi EG, Nebro A, Alba E (2006) Metaheuristics for multiobjective combinatorial optimization problems, review and recent issues, National Institute of Research in Informatics and Control (INRIA), Report No. 5978
Aarts E, Lenstra JK (2003) Local search in combinatorial optimization. Princeton University Press, New Jersey
Kirkpatrick SJ, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. J Sci 220:671–680
Siarry P, Berthiau G, Durdin F, Haussy J (1997) Enhanced simulated annealing for globally minimizing functions of many-continuous variables. ACM Trans Math Softw 23(2):209–228
Glover F (1989) Tabu search—part I. ORSA J Comput 1(3):190–206
Glover F (1990) Tabu search—part II. ORSA J Comput 2(1):4–32
Laguna M, Martí R (2003) Scatter search: methodology and implementation in C. In: Operations research/computer science interfaces series, vol 24. Kluwer Academic Publishers, Boston, p 312
Grimbleby JB (2000) Automatic analog circuit synthesis using genetic algorithms. Proc IEE Circuits Devices Syst 147(6):319–323
Dréo J, Petrowski A, Siarry P, Taillard E (2006) Metaheuristics for hard optimization: methods and case studies. Springer, Heidelberg
Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial system. Oxford University Press, New York
Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms for discrete optimization. Artif Life 5(2):137–172
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, pp 1942–1948
Eberhart R, Shi Y (1998) Comparison between genetic algorithm and particle swarm optimization. In: Porto VW, Saravanan N, Waagen D, Eiben AE (eds) Evolutionary programming VII, Springer, Berlin, pp 611–616
Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73
Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697
Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization, part I: background and development. Nat Comput 6(4):467–484
Maulik PC, Carley LR, Rutenbar RA (1995) Integer programming based topology selection of cell-level analog circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 14(4):401–412
Harvey JP, Elmasry MI, Leung B (1992) STAIC: an interactive framework for synthesizing CMOS and Bi-CMOS analog circuits. IEEE Trans CAD 11:1402–1417
Koh HY, Séquin CH, Gray PR (1990) OPASYN: a compiler for CMOS operational amplifiers. IEEE Trans CAD 9(2):113–125
Nye W, Riley DC, Sangiovanni-Vincentelli AL, Tits AL (1988) DELIGHT.SPICE: an optimization-based system for design of integrated circuits. IEEE Trans CAD 7:501–519
Degrauwe MGR, Nys O, Dijkstra E, Rijmenants J, Bitz S, Goffart BLAG, Vittoz EA, Cserveny S, Meixenberger C, Van der Stappen G, Oguey HJ (1987) IDAC: an interactive design tool for analog CMOS circuits. IEEE J Solid State Circuits 22(6):1106–1116
Harjani R, Rutenbar R, Carley LR (1989) OASYS: a framework for analog circuit synthesis. IEEE Trans CAD 8(12):1247–1266
Lee J, Kim Y (2006) ASLIC: a low power CMOS analog circuit design automation. Integr VLSI J 39(3):157–181
Gielen GGE, Rutenbar RA (2000) Computer-aided design of analog and mixed signal integrated circuits. IEEE 88(12):1825–1852
Massier T, Graeb H, Schlichtmann U (2008) The sizing rules method for CMOS and bipolar analog integrated circuit synthesis. IEEE Trans Comput Aided Des Integr Circuits Syst 27(12):2209–2222
Kruiskamp W, Leenaerts D (1995) DARWIN: CMOS op-amp synthesis by means of a genetic algorithm. In: Proceedings of the 32nd ACM/IEEE conference on design automation, pp 433–438
Sripramong T, Toumazou C (2002) The invention of CMOS amplifiers using genetic programming and current-flow analysis. IEEE Trans Comput Aided Des Integr Circuits Syst 21:1237–1252
Hershenson M, Boyd SP, Lee TH (2001) Optimal design of a CMOS op-amp via geometric programming. IEEE Trans Comput Aided Des Integr Circuits Syst 20(1):1–21
Liu B, Fernández FV, Gielen G, Castro-López R, Roca E (2009) A memetic approach to the automatic design of high performance analog integrated circuits. ACM Trans Des Autom Electron Syst 14:1–24
Guerra-Gomez I, Tlelo-Cuautle E, McConaghy T, Gielen G (2009) Decomposition-based multi-objective optimization of second generation current conveyors. In: IEEE mid-west symposium on circuits and systems, IMWSCS’09, pp 220–223
Salem SB, Fakhfakh M, Masmoudi DS, Loulou M, Loumeau P, Masmoudi N (2006) A high performances CMOS CCII and high frequency applications. Analog Integr Circ Sig Process 49(1):71–78
Cooren Y, Fakhfakh M, Loulou M, Siarry P (2007) Optimizing second generation current conveyors, using particle swarm optimization. In: 19th IEEE international conference on microelectronics, ICM’2007, pp 365–368
Fakhfakh M, Cooren Y, Sallem A, Loulou M, Siarry P (2010) Analog circuit design optimization through the particle swarm optimization technique. Analog Integr Circ Sig Process 63(1):71–82
Tawdross P, Konig A (2005) Investigation of particle swarm optimization for dynamic reconfiguration of field-programmable analog circuits. In: 5th International conference on hybrid intelligent systems, HIS’05, pp 259–264
Tawdross P, Konig A (2006) Particle swarm optimization for reconfigurable sensor electronics-case study: 3 Bit Flash ADC. In: IEEE international workshop on intelligent solutions in embedded systems, WISES’06, Vienna, pp 1–10
Thakker RA, Baghini MS, Patil MB (2009) Low-power low-voltage analog circuit design using hierarchical particle swarm optimization. In: IEEE 22nd international conference on VLSI design, pp 427–432
Tulunay G, Balkir S (2008) A synthesis tool for CMOS RF low noise amplifiers. IEEE Trans CAD Integr Circuits Syst 27(5):977–982
Choi K, Allstot D (2006) Parasitic-aware design and optimization of a CMOS RF power amplifier. IEEE Trans Circuits Syst I 53(1):16–25
Tlelo-Cuautle E, Guerra-Gomez I, Duarte-Villasenor MA, de la Fraga Luis G, Flores-Becerra G, Reyes-Salgado G, Reyes-Garcia CA, Rodriguez-Gomez G (2010) Applications of evolutionary algorithms in the design automation of analog integrated circuits. J Appl Sci 10(17):1859–1872
Huang ZK, Chau KW (2008) A new image thresholding method based on gaussian mixture model. Appl Math Comput 205(2):899–907
Cheng CT, Chau KW, Sun YG, Lin JY (2005) Long-term prediction of discharges in Manwan Hydropower using adaptive-network-based fuzzy inference systems models. Lect Notes Comput Sci 3612:1152–1161
Taormina R, Chau K, Sethi R (2012) Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng Appl Artif Intell 25(8):1670–1676
Wu CL, Chau KW, Li YS (2009) Predicting monthly stream flow using data-driven models coupled with data pre-processing techniques. Water Resour Res 45(8):W08432
Zhang J, Chau KW (2009) Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization. J Univers Comput Sci 15(4):840–858
Chau KW (2007) Application of a PSO-based neural network in analysis of outcomes of construction claims. Autom Constr 16(5):642–646
Valdez Fevrier, Melin Patricia, Castillo Oscar (2014) A survey on nature-inspired optimization algorithms with fuzzy logic for dynamic parameter adaptation. Expert Syst Appl 41(14):6459–6466
Sanchez MauricioA, Castillo Oscar, Castro JuanR, Melin Patricia (2014) Fuzzy granular gravitational clustering algorithm for multivariate data. Inf Sci 279:498–511
Valdez Fevrier, Melin Patricia, Castillo Oscar (2014) Modular neural networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms. Inf Sci 270:143–153
Sombra A, Valdez F, Melin P, Castillo O (2013) A new gravitational search algorithm using fuzzy logic to parameter adaptation. In: IEEE congress on evolutionary computation. IEEE, Mexico, pp 1068–1074
Ling SH, Iu HHC, Leung FHF, Chan KY (2008) Improved hybrid particle swarm optimized wavelet neural network for modelling the development of fluid dispensing for electronic packaging. IEEE Trans Ind Electron 55(9):3447–3460
Biswal B, Dash PK, Panigrahi BK (2009) Power quality disturbance classification using fuzzy c-means algorithm and adaptive particle swarm optimization. IEEE Trans Ind Electron 56(1):212–220
Rashedi E, Hossien N, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248
Rashedi E, Hossien N, Saryazdi S (2011) Filter modelling using gravitational search algorithm. Eng Appl Artif Intell 24(1):117–122
Gauci M, Dodd TJ, Groß R (2012) Why ‘GSA: a gravitational search algorithm’ is not genuinely based on the law of gravity. Nat Comput 11(4):719–720
Deregeh F, Nezamabadi-pour H (2013) A new gravitational image edge detection method using edge explorer agents. Nat Comput. doi:10.1007/s11047-013-9382-9
Jahangir Alam SM, Rabiul Alam M, Hu G, Mehrab MZ (2011) Bit error rate optimization in fiber optic communications. Int J Mach Learn Comput 1(5):435–440
Kalyani S, Swarup KS (2011) Static security evaluation in power systems using multi-class SVM with different parameter selection methods. Int J Mach Learn Comput 1(2):193–198
Karlık B, Öztoprak E (2012) Personalized cancer treatment by using Naive Bayes classifier. Int J Mach Learn Comput 2(3):339–344
Sivapriya TR, Nadira Banu Kamal AR, Thavavel V (2013) Automated classification of dementia using PSO based least square support vector machine. Int J Mach Learn Comput 3(2):181–185
Hung C, Hung C-N, Lin S-Y (2014) Predicting time series using integration of moving average and support vector regression. Int J Mach Learn Comput 4(6):491–495
Tian N, Lai C-H (2014) Parallel quantum-behaved particle swarm optimization. Int J Mach Learn Cybernet 5(2):309–318
Ma W, Wang M, Zhu X (2014) Improved particle swarm optimization based approach for bilevel programming problem-an application on supply chain model. Int J Mach Learn Cybernet 5(2):281–292
Wang X, He Y, Dong L, Zhao H (2011) Particle swarm optimization for determining fuzzy measures from data. Inf Sci 181(19):4230–4252
Allen P, Holberg D (2002) CMOS analog circuit design, 2nd edn. Oxford University Press, New York
Mohan P (2010) Sensitivity analysis of third and fourth-order filters. Circuits Syst Signal Process 29(5):999–1005
Gomez G, Cuautle ET, de la Fraga LG (2013) Richardson extrapolation-based sensitivity analysis in the multi-objective optimization of analog circuits. Appl Math Comput 222:167–176
Vural RA, Yildirim T (2012) Analog circuit sizing via swarm intelligence. AEU Int J Electron Commun 66(9):732–740
Vural RA, Erkmen B, Bozkurt U, Yildirim T (2013) Differential amplifier area optimization with evolutionary algorithms. In: World Congress on Engineering and Computer Science, WCECS 2013, vol 2, San Francisco, USA, pp 666–670
Vural RA, Yildirim T (2011) Swarm intelligence based sizing methodology for CMOS operational amplifier. In: 12th IEEE symposium on computational intelligence and informatics, pp 525–528
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mallick, S., Kar, R., Mandal, D. et al. Optimal sizing of CMOS analog circuits using gravitational search algorithm with particle swarm optimization. Int. J. Mach. Learn. & Cyber. 8, 309–331 (2017). https://doi.org/10.1007/s13042-014-0324-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-014-0324-3