Skip to main content
Log in

Nonlinear system identification using least squares support vector machine tuned by an adaptive particle swarm optimization

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, we present a method for nonlinear system identification. The proposed method adopts least squares support vector machine (LSSVM) to approximate a nonlinear autoregressive model with eXogeneous (NARX). First, the orders of NARX model are determined from input–output data via Lipschitz quotient criterion. Then, an LSSVM model is used to approximate the NARX model. To obtain an efficient LSSVM model, a novel particle swarm optimization with adaptive inertia weight is proposed to tune the hyper-parameters of LSSVM. Two experimental results are given to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aadaleesan P, Miglan N, Sharma R, Saha P (2008) Nonlinear system identification using Wiener type Laguerre-wavelet network model. Chem Eng Sci 63:3932–3941

    Article  Google Scholar 

  2. Abdelazim T, Malik O (2005) Identification of nonlinear systems by Takagi–Sugeno fuzzy logic grey box modeling for real-time control. Control Eng Pract 13:1489–1498

    Article  Google Scholar 

  3. Adachi S, Ogawa T (2001) A new system identification method based on support vector machines. In: IFAC workshop adaptation and learning in control and signal processing, Italy

  4. Akaike H (2009) A new look at the statistical model identification. IEEE Fuzzy Set Syst 160:3518–3529

    Article  Google Scholar 

  5. Alci M, Asyali MH (1974) Nonlinear system identification via Laguerre network based fuzzy systems. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  6. Aydin I, Karakose M, Akin E (2011) A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Appl Soft Comput 11(1):120–129

    Article  Google Scholar 

  7. Bagis A (2008) Fuzzy rule base design using tabu search algorithm for nonlinear system modeling. ISA Trans 47:32–44

    Article  Google Scholar 

  8. de Barros J, Dexter A (2007) On-line identification of computationally undemanding evolving fuzzy models. Fuzzy Sets Syst 158:1997–2012

    Article  MATH  Google Scholar 

  9. Boyd S, Chua L (1985) Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans Circuits Syst 32(11):1150–1161

    Article  MathSciNet  MATH  Google Scholar 

  10. Du H, Zhang N (2008) Application of evolving Takagi–Sugeno fuzzy model to nonlinear system identification. Appl Soft Comput 8:676–686

    Article  Google Scholar 

  11. Ge H, Du W, Qian F, Liang Y (2009) Identification and control of nonlinear systems by a time-delay recurrent neural network. Neurocomputing 72:2857–2864

    Article  Google Scholar 

  12. Ge H, Qian F, Liang Y, Du W, Wang L (2008) Identification and control of nonlinear system by a dissimilation particle swarm optimization-based Elman neural network. Nonlinear Anal Real World Appl 9:1345–1360

    Article  MathSciNet  MATH  Google Scholar 

  13. Giri F, Bai E (2010) Block-oriented nonlinear system identification. Springer, Berlin

    Book  MATH  Google Scholar 

  14. Guenounou O, Belmehdi A, Dahhou B (2009) Multi-objective optimization of TSK fuzzy models. Expert Syst Appl 36:7416–7423

    Article  Google Scholar 

  15. Guo X, Yang J, Wu C, Wang C, Liang Y (2008) A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71(16):3211–3215

    Article  Google Scholar 

  16. He X, Asada H.: A new method for identifying orders of input-output models for nonlinear dynamic systems. In: American control conference, pp 2520–2523 (1993)

  17. Jeng J, Lee M, Huang H (2005) Identification of block-oriented nonlinear processes using designed relay feedback tests. Ind Eng Chem Res 44:2145–2155

    Article  Google Scholar 

  18. Juang CF, Hsieh CD (2009) TS-fuzzy system-based support vector regression. Fuzzy Sets Syst 160(17):2486–2504

    Article  MathSciNet  MATH  Google Scholar 

  19. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings, IEEE international conference on neural networks, 1995, vol 4, pp 1942–1948 (1995)

  20. Kennedy JF, Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan Kaufmann, San Francisco

    Google Scholar 

  21. Li S, Tan M (2010) Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm. Neurocomputing 73(10):2089–2096

    Article  MathSciNet  Google Scholar 

  22. Lima CA, Coelho AL, Von Zuben FJ (2007) Hybridizing mixtures of experts with support vector machines: investigation into nonlinear dynamic systems identification. Inf Sci 177(10):2049–2074

    Article  Google Scholar 

  23. Lu Z, Sun J (2009) Non-Mercer hybrid kernel for linear programming support vector regression in nonlinear systems identification. Appl Soft Comput 9(1):94–99

    Article  Google Scholar 

  24. Lu Z, Sun J, Butts KR (2009) Linear programming support vector regression with wavelet kernel: a new approach to nonlinear dynamical systems identification. Math Comput Simul 79(7):2051–2063

    Article  MathSciNet  MATH  Google Scholar 

  25. Mirri D, Iuculano G, Filicori F, Pasini G, Vannini G, Gualtieri G (2002) A modified Volterra series approach for nonlinear dynamic systems modeling. IEEE Trans Circ Syst Fund Theor Appl 49:1118–1128

    Article  Google Scholar 

  26. Narendra K, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(1):4–27

    Article  Google Scholar 

  27. Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670

    Article  Google Scholar 

  28. Rojo-Álvarez JL, Martínez-Ramón M, de Prado-Cumplido M, Artés-Rodríguez A, Figueiras-Vidal AR (2004) Support vector method for robust ARMA system identification. IEEE Trans Signal Process 52(1):155–164

    Article  MathSciNet  Google Scholar 

  29. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MATH  Google Scholar 

  30. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: The 1998 IEEE international conference on evolutionary computation proceedings, 1998. IEEE World Congress on computational intelligence. IEEE, pp 69–73

  31. Subudhia B, Jena D (2011) A differential evolution based neural network approach to nonlinear system identification. Appl Soft Comput 11:861–871

    Article  Google Scholar 

  32. Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 3:293–300

    Article  Google Scholar 

  33. Tang X, Zhuang L, Jiang C (2009) Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization. Expert Syst Appl 36(9):11853–11857

    Article  Google Scholar 

  34. Tötterman S, Toivonen HT (2009) Support vector method for identification of Wiener models. J Process Control 19(7):1174–1181

    Article  Google Scholar 

  35. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  36. Wu Q (2009) The forecasting model based on wavelet \(\nu\)-support vector machine. Expert Syst Appl 36(4):7604–7610

    Article  Google Scholar 

  37. Xie W, Zhu Y, Zhao Z, Wong Y (2009) Nonlinear system identification using optimized dynamic neural network. Neurocomputing 72:3277–3287

    Article  Google Scholar 

  38. Zhang X, Chen X, He Z (2010) An ACO-based algorithm for parameter optimization of support vector machines. Expert Syst Appl 37(9):6618–6628

    Article  Google Scholar 

  39. Zhao H, Zhang J (2009) Nonlinear dynamic system identification using pipelined functional link artificial recurrent network network. Neurocomputing 72:3046–3054

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (No. 61273260), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20121333120010), China Postdoctoral Science Foundation (No. 2013M530888, 2014T70229), Natural Science Foundation of Hebei Province (No. F2014203208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinggan Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Han, ., Liu, F. et al. Nonlinear system identification using least squares support vector machine tuned by an adaptive particle swarm optimization. Int. J. Mach. Learn. & Cyber. 6, 981–992 (2015). https://doi.org/10.1007/s13042-015-0403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0403-0

Keywords