Skip to main content
Log in

An optimal learning-based controller derived from Hamiltonian function combined with a cellular searching strategy for automotive coldstart emissions

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The main objective of this study is to propose a novel algorithmic framework for the implementation of a nonlinear controller for reducing the amount of tailpipe hydrocarbon emissions in automotive engines over the coldstart period. To this aim, the control problem for a given engine is formulated in the form of the standard Bolza problem, and then, the concepts of Euler–Lagrange equation and Hamiltonian function are taken into account to calculate the optimal states, co-states, and control input signals. An extreme learning machine is also linked to an experimentally validated nonlinear state-space representation of the engine during the coldstart to approximate the values of exhaust gas temperature and engine-out hydrocarbon emissions, which are two key variables for the considered control problem. To solve the resulting system of equations, a cellular variant of the particle swarm optimization technique is implemented and the existing nonlinear system of equations is solved heuristically. In addition, some constraints are exerted on the control signals to guarantee the smooth operation of the engine by applying the calculated controlling commands. Finally, the authenticity of the resulting optimal controller is validated against a classical Pontryagin’s minimum principle-based control system. Generally, the findings demonstrate the effectiveness of the proposed control methodology to reduce coldstart hydrocarbon emissions in automotive engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rajmani R (2012) Vehicle dynamics and control. Springer-Verlag, Mech Eng Series

    Book  Google Scholar 

  2. Taghavipour A, Azad NL, McPhee J (2015) Real-time predictive control strategy for a plug-in hybrid electric powertrain. Mechatronics. doi:10.1016/j.mechatronics.2015.04.020

    Google Scholar 

  3. Ulsoy AG, Peng H, Cakmakci M (2014) Automotive control systems. Cambridge Press, Cambridge

    Google Scholar 

  4. Zhai YJ, Yu DL (2009) Neural network model-based automotive engine air/fuel ratio control and robustness evaluation. Eng Appl Artif Intell 22:171–180

    Article  Google Scholar 

  5. Taghavipour A, Azad NL, McPhee J (2012) An optimal power management strategy for power-split plug-in hybrid electric vehicles. Int J Veh Des 60(3/4):286–304

    Article  Google Scholar 

  6. Asadi B, Vahidi A (2011) Predictive cruise control: utilizing upcoming traffic signal information for improving fuel economy and reducing trip time. IEEE Trans Control Syst Technol 19(3):707–714

    Article  Google Scholar 

  7. Xiao L, Gao F (2010) A comprehensive review of the development of adaptive cruise control systems. Veh Syst Dyn 48(10):1167–1192

    Article  Google Scholar 

  8. Azad NL, Sanketi PR, Hedrick JK (2012) Determining model accuracy requirements for automotive engine coldstart hydrocarbon emissions control. J Dyn Syst T ASME 134(5):051002

    Article  Google Scholar 

  9. Vajedi M, Azad NL (2014) Ecological adaptive cruise controller for plug-in hybrid electric vehicles using nonlinear model predictive control. IEEE Trans Intell Trans Syst. doi:10.1109/TITS.2015.2462843

    Google Scholar 

  10. Qin G, Ge A, Lee JJ (2006) Fuzzy logic control for automobiles I: knowledge-based gear position decision. Adv Ind, Control, pp 145–157

    Google Scholar 

  11. Chen X, Wang Y, Haskara I, Zhu G (2014) Optimal air-to-fuel ratio tracking control with adaptive biofuel content estimation for LNT regeneration. IEEE Trans Contr Sys Tech 22(2):428–439

    Article  Google Scholar 

  12. Cheng X, Jiang S, Wang S (2011) Design of a sliding mode controller for automotive engine speed regulation. In: IEEE Conference Industrial Electronics and Applications, Beijing, pp 1722–1725

  13. Mozaffari A, Vajedi M, Azad NL (2015) A robust safety-oriented autonomous cruise control scheme for electric vehicles based on model predictive control and online sequential extreme learning machine with a hyper-level fault tolerance-based supervisor. Neurocomputing 151(2):845–856

    Article  Google Scholar 

  14. Salehi R, Shahbakhti M, Hedrick JK (2014) Real-time hybrid switching control of automotive cold start hydrocarbon emission. J Dyn Syst T ASME 136:041002

    Article  Google Scholar 

  15. Dextreit C, Kolmonovsky IV (2014) Game theory controller for hybrid electric vehicles. IEEE Trans Contr Sys Tech 22(2):652–663

    Article  Google Scholar 

  16. Azad NL, Khajepour A, McPhee J (2007) Robust state feedback stabilization of articulated steer vehicles. Vehicle Syst Dyn 45(3):249–275

    Article  Google Scholar 

  17. Zhang S, Zhang C, Han G, Wang Q (2014) Optimal control strategy design based on dynamic programming for a dual-motor coupling-propulsion system, Sci World J 2014: Article ID: 958239

  18. Prokhorov DV (2008) Computational intelligence in automotive applications. Studies in Computational Intelligence. Springer-Verlag, Berlin

    Book  Google Scholar 

  19. Zavala JC (2007) Engine modeling and control for minimization of hydrocarbon coldstart emissions in SI engine. Ph.D. Thesis, University of California, Berkeley, USA

  20. Sanketi PR, Zavala JC, Hedrick JK (2006) Automotive engine hybrid modeling and control for reduction of hydrocarbon emissions. Int J Control 79(5):449–464

    Article  MATH  Google Scholar 

  21. Wittka T, Muller V, Dittmann P, Pischinger S (2015) Development and investigation of diesel fuel reformer for LNT regeneration. Emiss Control Sci Technol. doi:10.1007/s40825-015-0017-8

    Google Scholar 

  22. Brijesh P, Sreedhara S (2013) Exhaust emissions and its control methods in compression ignition engines: a review. Int J Auto Tech-Kor 14(2):195–206

    Article  Google Scholar 

  23. Shaw B, Hedrick JK (2003) Closed-loop engine coldstart control to reduce hydrocarbon emissions, American Control Conference 1392–1397

  24. Sanketi PR, Zavala JC, Wilcutts M, Kaga T, Hedrick JK (2007) MIMO control for automotive coldstart. Fifth IFAC Symposium on Advances in Automotive Control, August

  25. Zavala JC, Sanketi PR, Wilcutts M, Kaga T, Hedrick JK (2007) Simplified models of engine HC emissions, exhaust temperature and catalyst temperature for automotive coldstart, Fifth IFAC Symposium on Advances in Automotive Control, August

  26. Mozaffari A, Azad NL (2014) Optimally pruned extreme learning machine with ensemble of regularization techniques and negative correlation penalty applied to automotive engine coldstart hydrocarbon emission identification. Neurocomputing 131:143–156

    Article  Google Scholar 

  27. Mozaffari A, Azad NL (2014) A robust time delay auto-regressive exogenous fuzzy inference system for real-time estimation of catalyst temperature over engines coldstart operation: a multiobjective implementation scenario. Int J Dyn Control. doi:10.1007/s40435-014-0133-2

    Google Scholar 

  28. Mozaffari A, Azad NL (2015) Coupling Gaussian generalised regression neural network and mutable smart bee algorithm to analyse the characteristics of automotive engine coldstart hydrocarbon emission. J Exp Theor Artif Intell 27(3):253–272

    Article  Google Scholar 

  29. Naidu DS (2003) Optimal control systems. CRC Press

  30. Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2:107–122

    Article  Google Scholar 

  31. Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning: data mining, inference, and prediction, Springer Series in Statistics

  32. Shi Y, Liu H, Gao L, Zhang G (2011) Cellular particle swarm optimization. Inf Sci 181:4460–4493

    Article  MathSciNet  MATH  Google Scholar 

  33. Fathi A, Mozaffari A (2014) Modeling a shape memory alloy actuator using an evolvable recursive black-box and hybrid heuristic algorithms inspired based on the annual migration of salmons in nature. Appl Soft Comput 14:229–251

    Article  Google Scholar 

  34. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  35. Mozaffari A, Behzadipour S (2015) A modular extreme learning machine with linguistic interpreter and accelerated chaotic distributor for evaluating the safety of robot maneuvers in laparoscopic surgery. Neurocomputing 151(2):913–932

    Article  Google Scholar 

  36. Emami M, Mozaffari A, Azad NL, Rezaie B (2014) An empirical investigation into the effects of chaos on different types of evolutionary crossover operators for efficient global search in complicated landscapes. Int J Comput Math. doi:10.1080/00207160.2014.985664

    Google Scholar 

  37. Mozaffari A, Emami M, Azad NL, Fathi A (2014) On the efficacy of chaos-enhanced heuristic walks with nature-based controllers for robust and accurate intelligent search, part A: an experimental analysis. J Exp Theor Artif Intell. doi:10.1080/0952813X.2014.954632

    Google Scholar 

  38. Metlicka M, Davendra D (2015) Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems. Swarm Evol Comput. doi:10.1016/j.swevo.2015.03.002

    MATH  Google Scholar 

  39. Gandomi A, Yang XS (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232

    Article  MathSciNet  Google Scholar 

  40. Zelinka I, Celikovsky S, Richter H, Chen G (2010) Evolutionary algorithms and chaotic systems, studies in computational intelligence

  41. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. Proc IEEE Int Conf Evol Comput Anchorage Alaska 1998:66–73

    Google Scholar 

  42. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6:58–73

    Article  Google Scholar 

  43. Parsopoulos KE, Vrahatis MN (2004) UPSO: a unified particle swarm optimization scheme, Lecture Series on Computational Sciences, pp 868–873

  44. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8:204–210

    Article  Google Scholar 

  45. Peram T, Veeramachaneni K, Mohan CK (2003) Fitness–distance-ratio based particle swarm optimization, Proceedings of Swarm Intelligence Symposium, pp 174–181

  46. Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239

    Article  Google Scholar 

  47. Azad NL (2015) On-line optimization of automotive engine coldstart hydrocarbon emissions control at idle conditions. Proc IMechE I J Sys Contr Eng 229(9):781–796

    Article  Google Scholar 

  48. Mozaffari A (2015) Predictive control strategies for automotive engine coldstart emissions. MSc. Thesis, University of Waterloo, http://hdl.handle.net/10012/9673

  49. Wong PK, Wong HC, Vong CM, Long TM, Wong KI, Gao X (2015) Fault tolerance automotive air-ratio control using extreme learning machine model predictive controller, Math Probl Eng 2015, Article ID: 317142

  50. Vaughan A, Bohac SV (2015) Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series. Neural Netw 70:18–26

    Article  Google Scholar 

  51. Janakiraman VM, Nguyen XL, Sterniak J, Assanis D (2015) Identification of the dynamic operating envelope of HCCI engines using class imbalance learning. IEEE Trans Neural Netw Learn Syst 26(1):98–112

    Article  MathSciNet  Google Scholar 

  52. Wong PK, Wong KI, Vong CM, Cheung CS (2015) Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew Energ 74:640–647

    Article  Google Scholar 

  53. Wong KI, Vong CM, Wong PK, Luo J (2015) Sparse Bayesian extreme learning machine and its application to biofuel engine performance prediction. Neurocomputing 149:397–404

    Article  Google Scholar 

  54. Wong PK, Vong CM, Gao XH, Wong KI (2014) Adaptive control using fully online sequential-extreme learning machine and a case study on engine air-fuel Ratio regulation, Math Probl Eng 2014, Article ID: 246964

  55. Mozaffari A, Azad NL, Hedrick JK (2015) A hybrid switching predictive controller based on bi-level kernel-based ELM and online trajectory builder for automotive coldstart emissions reduction. Neurocomputing. doi:10.1016/j.neucom.2015.08.070

    Google Scholar 

  56. Wong PK, Wong HC, Vong CM, Xie Z, Huang S (2015) Model predictive engine air-ratio control using online sequential extreme learning machine. Neural Comput Appl. doi:10.1007/s00521-014-1555-7

    Google Scholar 

  57. Shaw B (2002) Modeling and control of automotive coldstart hydrocarbon emissions. Ph.D. Thesis, University of California, Berkeley, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser L. Azad.

Appendix A

Appendix A

Details of difference-based formulations of the proposed controller

The following difference-based system of equations is obtained for the co-states:

$$ \,\left\{ \begin{array}{l} \frac{{\partial {\mathbf{H}}\left( {{\mathbf{X}}^{*} \left( k \right),{\mathbf{U}}^{*} \left( k \right),\bar{\lambda }^{*} \left( {k + 1} \right)} \right)}}{{\partial x_{1}^{*} \left( k \right)}} = - \lambda_{1}^{*} \left( k \right) \hfill \\ \quad = - \,\,K_{{T_{exh} }} \sum\limits_{j = 1}^{N} {\left( {\omega_{j}^{1} {\kern 1pt} \frac{{\partial {\kern 1pt} g\left( {\alpha_{j}^{1} \Im_{1} \left( k \right) + \alpha_{j}^{2} \Im_{2} \left( k \right) + \alpha_{j}^{3} \Im_{1} \left( k \right) + b_{j}^{1} } \right)}}{{\partial {\kern 1pt} \Im_{1} \left( k \right)}} \cdot \frac{{\partial {\kern 1pt} \Im_{1} \left( k \right)}}{{\partial x_{1}^{*} \left( k \right)}}} \right)} - \left( {\frac{{k_{1} }}{{\tau_{1} }}\lambda_{1}^{*} \left( {k + 1} \right)} \right) \hfill \\ \frac{{\partial {\mathbf{H}}\left( {{\mathbf{X}}^{*} \left( k \right),{\mathbf{U}}^{*} \left( k \right),\bar{\lambda }^{*} \left( {k + 1} \right)} \right)}}{{\partial x_{3}^{*} \left( k \right)}} = - \lambda_{2}^{*} \left( k \right) \hfill \\ \quad = - \,K_{{T_{exh} }} \sum\limits_{j = 1}^{N} {\left( {\omega_{j}^{1} {\kern 1pt} \frac{{\partial {\kern 1pt} g\left( {\alpha_{j}^{1} \Im_{1} \left( k \right) + \alpha_{j}^{2} \Im_{2} \left( k \right) + \alpha_{j}^{3} \Im_{1} \left( k \right) + b_{j}^{1} } \right)}}{{\partial {\kern 1pt} \Im_{3} \left( k \right)}} \cdot \frac{{\partial {\kern 1pt} \Im_{3} \left( k \right)}}{{\partial x_{3}^{*} \left( k \right)}}} \right)} - \left( {\frac{{k_{3} }}{{\tau_{3} }}\lambda_{2}^{*} \left( {k + 1} \right)} \right) \hfill \\ \frac{{\partial {\mathbf{H}}\left( {{\mathbf{X}}^{*} \left( k \right),{\mathbf{U}}^{*} \left( k \right),\bar{\lambda }^{*} \left( {k + 1} \right)} \right)}}{{\partial x_{5}^{*} \left( k \right)}} = - \lambda_{3}^{*} \left( k \right) = \hfill \\ \quad = \;\;K_{HC} \sum\limits_{j = 1}^{N} {\left( {\omega_{j}^{2} {\kern 1pt} \frac{{\partial {\kern 1pt} g\left( {\kappa_{j}^{1} \Im_{4} \left( k \right) + \kappa_{j}^{2} \Im_{5} \left( k \right) + \kappa_{j}^{3} \Im_{6} \left( k \right) + b_{j}^{2} } \right)}}{{\partial {\kern 1pt} \Im_{5} \left( k \right)}} \cdot \frac{{\partial {\kern 1pt} \Im_{5} \left( k \right)}}{{\partial x_{5}^{*} \left( k \right)}}} \right)} - \left( {\frac{{k_{5} }}{{\tau_{5} }}\lambda_{3}^{*} \left( {k + 1} \right)} \right) \hfill \\ \frac{{\partial {\mathbf{H}}\left( {{\mathbf{X}}^{*} \left( k \right),{\mathbf{U}}^{*} \left( k \right),\bar{\lambda }^{*} \left( {k + 1} \right)} \right)}}{{\partial x_{6}^{*} \left( k \right)}} = - \lambda_{4}^{*} \left( k \right) = \hfill \\ \quad = \;\;K_{HC} \sum\limits_{j = 1}^{N} {\left( {\omega_{j}^{2} {\kern 1pt} \frac{{\partial {\kern 1pt} g\left( {\kappa_{j}^{1} \Im_{4} \left( k \right) + \kappa_{j}^{2} \Im_{5} \left( k \right) + \kappa_{j}^{3} \Im_{6} \left( k \right) + b_{j}^{2} } \right)}}{{\partial {\kern 1pt} \Im_{6} \left( k \right)}} \cdot \frac{{\partial {\kern 1pt} \Im_{6} \left( k \right)}}{{\partial x_{6}^{*} \left( k \right)}}} \right)} - \left( {\frac{{k_{6} }}{{\tau_{6} }}\lambda_{4}^{*} \left( {k + 1} \right)} \right) \hfill \\ \end{array} \right. $$
(A.1)

Moreover, the following difference-based system of equations is obtained for the states:

$$ \,\left\{ \begin{array}{l} \frac{{\partial {\mathbf{H}}\left( {{\mathbf{X}}^{*} \left( k \right),{\mathbf{U}}^{*} \left( k \right),\bar{\lambda }^{*} \left( {k + 1} \right)} \right)}}{{\partial \lambda_{1}^{*} \left( {k + 1} \right)}} = x_{1}^{*} \left( {k + 1} \right) = \delta t \cdot \frac{{u_{1} \left( k \right)}}{{\tau_{1} }} + \left( {1 - \frac{{\delta t \cdot k_{1} }}{{\tau_{1} }}} \right)x_{1} \left( k \right) \hfill \\ \frac{{\partial {\mathbf{H}}\left( {{\mathbf{X}}^{*} \left( k \right),{\mathbf{U}}^{*} \left( k \right),\bar{\lambda }^{*} \left( {k + 1} \right)} \right)}}{{\partial \lambda_{2}^{*} \left( {k + 1} \right)}} = x_{3}^{*} \left( {k + 1} \right) = \delta t \cdot \frac{{16 - u_{2} \left( k \right)}}{{\tau_{3} }} + \left( {1 - \frac{{\delta t \cdot k_{3} }}{{\tau_{3} }}} \right)x_{3} \left( k \right) \hfill \\ \frac{{\partial {\mathbf{H}}\left( {{\mathbf{X}}^{*} \left( k \right),{\mathbf{U}}^{*} \left( k \right),\bar{\lambda }^{*} \left( {k + 1} \right)} \right)}}{{\partial \lambda_{3}^{*} \left( {k + 1} \right)}} = x_{5}^{*} \left( {k + 1} \right) = \delta t \cdot \frac{{16 - u_{2} \left( k \right)}}{{\tau_{5} }} + \left( {1 - \frac{{\delta t \cdot k_{5} }}{{\tau_{5} }}} \right)x_{5} \left( k \right) \hfill \\ \frac{{\partial {\mathbf{H}}\left( {{\mathbf{X}}^{*} \left( k \right),{\mathbf{U}}^{*} \left( k \right),\bar{\lambda }^{*} \left( {k + 1} \right)} \right)}}{{\partial \lambda_{4}^{*} \left( {k + 1} \right)}} = x_{6}^{*} \left( {k + 1} \right) = \delta t \cdot \frac{{\left| {u_{1} \left( k \right) - 55} \right| + \left( {u_{1} \left( k \right) - 55} \right)}}{{2\tau_{6} }} + \left( {1 - \frac{{\delta t \cdot k_{6} }}{{\tau_{6} }}} \right)x_{6} \left( k \right) \hfill \\ \end{array} \right. $$
(A.2)

In addition, the following equations are derived for the control signals:

$$ \,\left\{ \begin{aligned} \frac{{\partial {\mathbf{H}}\left( {{\mathbf{X}}^{*} \left( k \right),{\mathbf{U}}^{*} \left( k \right),\bar{\lambda }^{*} \left( {k + 1} \right)} \right)}}{{\partial u_{1}^{*} \left( {k + 1} \right)}} = 0 = K_{HC} \sum\limits_{j = 1}^{N} {\left( {\omega_{j}^{2} {\kern 1pt} \frac{{\partial {\kern 1pt} g\left( {\kappa_{j}^{1} \Im_{4} \left( k \right) + \kappa_{j}^{2} \Im_{5} \left( k \right) + \kappa_{j}^{3} \Im_{6} \left( k \right) + b_{j}^{2} } \right)}}{{\partial {\kern 1pt} \Im_{6} \left( k \right)}} \cdot \frac{{\partial {\kern 1pt} \Im_{6} \left( k \right)}}{{\partial u_{1}^{*} \left( k \right)}}} \right)} \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad - K_{{T_{exh} }} \sum\limits_{j = 1}^{N} {\left( {\omega_{j}^{1} {\kern 1pt} \frac{{\partial {\kern 1pt} g\left( {\alpha_{j}^{1} \Im_{1} \left( k \right) + \alpha_{j}^{2} \Im_{2} \left( k \right) + \alpha_{j}^{3} \Im_{3} \left( k \right) + b_{j}^{1} } \right)}}{{\partial {\kern 1pt} \Im_{1} \left( k \right)}} \cdot \frac{{\partial {\kern 1pt} \Im_{1} \left( k \right)}}{{\partial u_{1}^{*} \left( k \right)}}} \right)} \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad + \frac{{\lambda_{1}^{*} \left( {k + 1} \right)}}{{\tau_{1} }} + \frac{{\lambda_{4}^{*} \left( {k + 1} \right)}}{{2\tau_{6} }}\left( {1 + \frac{1}{{\left| {u_{1}^{*} \left( k \right) - 55} \right|}}} \right) \hfill \\ \frac{{\partial {\mathbf{H}}\left( {{\mathbf{X}}^{*} \left( k \right),{\mathbf{U}}^{*} \left( k \right),\bar{\lambda }^{*} \left( {k + 1} \right)} \right)}}{{\partial u_{2}^{*} \left( {k + 1} \right)}} = 0 = K_{HC} \sum\limits_{j = 1}^{N} {\left( {\omega_{j}^{2} {\kern 1pt} \frac{{\partial {\kern 1pt} g\left( {\kappa_{j}^{1} \Im_{4} \left( k \right) + \kappa_{j}^{2} \Im_{5} \left( k \right) + \kappa_{j}^{3} \Im_{6} \left( k \right) + b_{j}^{2} } \right)}}{{\partial {\kern 1pt} \Im_{5} \left( k \right)}} \cdot \frac{{\partial {\kern 1pt} \Im_{5} \left( k \right)}}{{\partial u_{2}^{*} \left( k \right)}}} \right)} \hfill \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad - K_{{T_{exh} }} \sum\limits_{j = 1}^{N} {\left( {\omega_{j}^{1} {\kern 1pt} \frac{{\partial {\kern 1pt} g\left( {\alpha_{j}^{1} \Im_{1} \left( k \right) + \alpha_{j}^{2} \Im_{2} \left( k \right) + \alpha_{j}^{3} \Im_{3} \left( k \right) + b_{j}^{1} } \right)}}{{\partial {\kern 1pt} \Im_{3} \left( k \right)}} \cdot \frac{{\partial {\kern 1pt} \Im_{3} \left( k \right)}}{{\partial u_{2}^{*} \left( k \right)}}} \right)} \hfill \\ \quad \quad \quad \quad \quad \quad + \frac{{\lambda_{2}^{*} \left( {k + 1} \right)}}{{\tau_{3} }} + \frac{{\lambda_{3}^{*} \left( {k + 1} \right)}}{{2\tau_{5} }} \hfill \\ \end{aligned} \right. $$
(A.3)

For Eqs. (A.1) to (A.3), the following differentiations should be employed:

$$ \begin{array}{l} \frac{{\partial {\kern 1pt} g\left( {\alpha_{j}^{1} \Im_{1} \left( k \right) + \alpha_{j}^{2} \Im_{2} \left( k \right) + \alpha_{j}^{3} \Im_{3} \left( k \right) + b_{j}^{1} } \right)}}{{\partial {\kern 1pt} \Im_{1} \left( k \right)}} = \frac{{\alpha_{j}^{1} \cdot e^{{ - \left( {\alpha_{j}^{1} \Im_{1} \left( k \right) + \alpha_{j}^{2} \Im_{2} \left( k \right) + \alpha_{j}^{3} \Im_{3} \left( k \right) + b_{j}^{1} } \right)}} }}{{\left( {1 + e^{{ - \left( {\alpha_{j}^{1} \Im_{1} \left( k \right) + \alpha_{j}^{2} \Im_{2} \left( k \right) + \alpha_{j}^{3} \Im_{3} \left( k \right) + b_{j}^{1} } \right)}} } \right)^{2} }} \hfill \\ \frac{{\partial {\kern 1pt} g\left( {\alpha_{j}^{1} \Im_{1} \left( k \right) + \alpha_{j}^{2} \Im_{2} \left( k \right) + \alpha_{j}^{3} \Im_{3} \left( k \right) + b_{j}^{1} } \right)}}{{\partial {\kern 1pt} \Im_{3} \left( k \right)}} = \frac{{\alpha_{j}^{3} \cdot e^{{ - \left( {\alpha_{j}^{1} \Im_{1} \left( k \right) + \alpha_{j}^{2} \Im_{2} \left( k \right) + \alpha_{j}^{3} \Im_{3} \left( k \right) + b_{j}^{1} } \right)}} }}{{\left( {1 + e^{{ - \left( {\alpha_{j}^{1} \Im_{1} \left( k \right) + \alpha_{j}^{2} \Im_{2} \left( k \right) + \alpha_{j}^{3} \Im_{3} \left( k \right) + b_{j}^{1} } \right)}} } \right)^{2} }} \hfill \\ \frac{{\partial {\kern 1pt} g\left( {\kappa_{j}^{1} \Im_{4} \left( k \right) + \kappa_{j}^{2} \Im_{5} \left( k \right) + \kappa_{j}^{3} \Im_{6} \left( k \right) + b_{j}^{2} } \right)}}{{\partial {\kern 1pt} \Im_{5} \left( k \right)}} = \frac{{\kappa_{j}^{2} \cdot e^{{ - \left( {\kappa_{j}^{1} \Im_{4} \left( k \right) + \kappa_{j}^{2} \Im_{5} \left( k \right) + \kappa_{j}^{3} \Im_{6} \left( k \right) + b_{j}^{2} } \right)}} }}{{\left( {1 + e^{{ - \left( {\kappa_{j}^{1} \Im_{4} \left( k \right) + \kappa_{j}^{2} \Im_{5} \left( k \right) + \kappa_{j}^{3} \Im_{6} \left( k \right) + b_{j}^{2} } \right)}} } \right)^{2} }} \hfill \\ \frac{{\partial {\kern 1pt} g\left( {\kappa_{j}^{1} \Im_{4} \left( k \right) + \kappa_{j}^{2} \Im_{5} \left( k \right) + \kappa_{j}^{3} \Im_{6} \left( k \right) + b_{j}^{2} } \right)}}{{\partial {\kern 1pt} \Im_{6} \left( k \right)}} = \frac{{\kappa_{j}^{3} \cdot e^{{ - \left( {\kappa_{j}^{1} \Im_{4} \left( k \right) + \kappa_{j}^{2} \Im_{5} \left( k \right) + \kappa_{j}^{3} \Im_{6} \left( k \right) + b_{j}^{2} } \right)}} }}{{\left( {1 + e^{{ - \left( {\kappa_{j}^{1} \Im_{4} \left( k \right) + \kappa_{j}^{2} \Im_{5} \left( k \right) + \kappa_{j}^{3} \Im_{6} \left( k \right) + b_{j}^{2} } \right)}} } \right)^{2} }} \hfill \\ \frac{{\partial {\kern 1pt} \Im_{1} \left( k \right)}}{{\partial x_{1}^{*} \left( k \right)}} = 1 - \frac{{\delta t \cdot k_{1} }}{{\tau_{1} }};\quad \frac{{\partial {\kern 1pt} \Im_{3} \left( k \right)}}{{\partial x_{3}^{*} \left( k \right)}} = 1 - \frac{{\delta t \cdot k_{3} }}{{\tau_{3} }};\quad \frac{{\partial {\kern 1pt} \Im_{5} \left( k \right)}}{{\partial x_{5}^{*} \left( k \right)}} = 1 - \frac{{\delta t \cdot k_{5} }}{{\tau_{5} }} \hfill \\ \frac{{\partial {\kern 1pt} \Im_{6} \left( k \right)}}{{\partial x_{6}^{*} \left( k \right)}} = 1 - \frac{{\delta t \cdot k_{6} }}{{\tau_{6} }};\quad \frac{{\partial {\kern 1pt} \Im_{1} \left( k \right)}}{{\partial u_{1}^{*} \left( k \right)}} = \frac{\delta t}{{\tau_{1} }};\quad \frac{{\partial {\kern 1pt} \Im_{6} \left( k \right)}}{{\partial u_{1}^{*} \left( k \right)}} = \frac{\delta t}{{2\tau_{6} }}\left( {1 + \frac{1}{{\left| {u_{1} \left( k \right) - 55} \right|}}} \right) \hfill \\ \frac{{\partial {\kern 1pt} \Im_{3} \left( k \right)}}{{\partial u_{2}^{*} \left( k \right)}} = \frac{ - \delta t}{{\tau_{3} }};\quad \frac{{\partial {\kern 1pt} \Im_{5} \left( k \right)}}{{\partial u_{2}^{*} \left( k \right)}} = \frac{ - \delta t}{{\tau_{5} }} \hfill \\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, N.L., Mozaffari, A. & Fathi, A. An optimal learning-based controller derived from Hamiltonian function combined with a cellular searching strategy for automotive coldstart emissions. Int. J. Mach. Learn. & Cyber. 8, 955–979 (2017). https://doi.org/10.1007/s13042-015-0467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-015-0467-x

Keywords