Skip to main content

Advertisement

Log in

PSO with aging leader and challengers for optimal design of high speed symmetric switching CMOS inverter

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

It is the general law of nature that every organism in the earth ages and has a limited lifespan. With the passage of time, the leader of the colony becomes old and feeble. This old leader no longer has the capability to lead the colony unless or otherwise it is challenged by a new and young challenger with great deal of enthusiasm. Thus, aging provides opportunities for the other individuals of the colony to challenge the leadership capability of the leader. This natural aging mechanism of the organism has been modelled into particle swarm optimization (PSO) and termed as PSO with aging leader and challenger (ALC-PSO). The main objective of this paper is to efficiently design a high speed symmetric switching CMOS inverter. Here, ALC-PSO is used for the optimal symmetric switching characterization of CMOS inverter. The optimal symmetric switching characterization of ALC-PSO is compared with those of real coded genetic algorithm (RGA), and conventional PSO reported in the recent literature. ALC-PSO based design results are also compared with the SPICE based results. Extensive simulation results justify the superior optimization capability of ALC-PSO over the afore-mentioned optimization techniques for the examples considered and can be efficiently used for optimal CMOS inverter design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  2. Luitel B, Venayagamoorthy GK (2010) Particle swarm optimization with quantum infusion for system identification. Eng Appl Artif Intell 23:635–649

    Article  Google Scholar 

  3. Mondal S, Ghoshal SP, Kar R, Mandal D (2012) Craziness based particle swarm optimization algorithm for FIR band stop filter design. J Swarm Evolut Optim 7:58–64

    Article  Google Scholar 

  4. Fang W, Sun J, Xu W (2009) A new mutated quantum behaved particle swarm optimizer for digital IIR filter design. EURASIP J Adv Signal Process 2009:1–7 (article ID. 367465)

    Article  MATH  Google Scholar 

  5. Krusienski DJ, Jenkins WK (2003) Adaptive filtering via particle swarm optimization. In: Proceedings of the 37th Asilomar conference on signals, systems and computers, vol 1, pp 571–575, Nov 2003

  6. Mondal S, Ghoshal SP, Kar R, Mandal D (2012) Design of optimal linear phase FIR high pass filter using craziness based particle swarm optimization technique. J King Saud Univ Comput Inf Sci Elsevier 24:83–92

    Google Scholar 

  7. Saha SK, Kar R, Mandal D, Ghoshal SP (2011) IIR filter design with craziness based particle swarm optimization technique. World Acad Sci Eng Technol 60:1628–1635

    Google Scholar 

  8. Mandal D, Ghoshal SP, Bhattacharya AK (2010) Application of evolutionary optimization techniques for finding the optimal set of concentric circular antenna array. Expert Syst Appl Elsevier 38:2942–2950

    Article  Google Scholar 

  9. Mastorakis NE, Gonos IF, Swamy MNS (2003) Design of two dimensional recursive filters using genetic algorithms. IEEE Trans Circuits and Syst-I: Fundam Theory Appl 50(5):634–639

    Article  Google Scholar 

  10. Lu HC, Tzeng S-T (2000) Design of arbitrary FIR log filters by genetic algorithm approach. Signal Process 80(3):497–505

    Article  MATH  Google Scholar 

  11. Das A, Vemuri R (2007) An automated passive analog circuit synthesis framework using genetic algorithms. In: IEEE Computer Society annual symposium on VLSI, (ISVLSI’07), pp 145–152

  12. Gill SS, Chandel R, Chandel A (2009) Comparative study of ant colony and genetic algorithms for VLSI circuit partitioning. World Acad Scie Eng Technol 28:890–894

    Google Scholar 

  13. Tang M, Lau RYK (2007) A parallel genetic algorithm for floor plan area optimization. In: Seventh international conference on intelligent systems design and application, Rio, Brazil, pp 801–806

  14. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural network, vol 4, pp 1942–1948

  15. Eberhart R, Shi Y (1998) Comparison between genetic algorithm and particle swarm optimization. In: Evolutionary programming-VII. Springer, pp 611-616

  16. Chen S, Luk BL (2010) Digital IIR filter design using particle swarm optimization. Int J Model Identif Control 9(4):327–335

    Article  Google Scholar 

  17. Gudise VG, Venayagamoorthy GK (2004) FPGA placement and routing using particle swarm optimization. In: IEEE Computer Society annual symposium on VLSI, USA, pp 307–308

  18. Lai C (2006) A novel image segmentation approach based on particle swarm optimization. IEICE Trans Fundam Electron Commun Comput Sci E89-A(1):324–327

    Article  Google Scholar 

  19. Ulker S (2008) Particle swarm optimization applications to microwave circuits. Microw Opt Technol Lett 50(5):1333–1336

    Article  Google Scholar 

  20. Vural RA, Yildirim T (2012) Analog circuit sizing via swarm intelligence. Int J Electron Commun (AEU) 66(9):732–740

    Article  Google Scholar 

  21. Ling SH, Iu HHC, Leung FHF, Chan KY (2008) Improved hybrid particle swarm optimized wavelet neural network for modelling the development of fluid dispensing for electronic packaging. IEEE Trans Ind Electron 55(9):3447–3460

    Article  Google Scholar 

  22. Biswal B, Dash PK, Panigrahi BK (2009) Power quality disturbance classification using fuzzy c-means algorithm and adaptive particle swarm optimization. IEEE Trans Ind Electron 56(1):212–220

    Article  Google Scholar 

  23. Chen W, Zhang J, Lin Y, Chen N, Zhan Z, Chung H, Li Y, Shi Y (2013) Particle swarm optimization with an aging leader and challengers. IEEE Trans Evolut Comput 17(2):241–258

    Article  Google Scholar 

  24. Vural RA, Der O, Yildirim T (2011) Investigation of particle swarm optimization for switching characterization of inverter design. Expert Syst Appl 38(5):5696–5703

    Article  Google Scholar 

  25. Vural RA, Der O, Yildirim T (2010) Particle swarm optimization based inverter design considering transient performance. Digit Signal Proc 20(4):1215–1220

    Article  Google Scholar 

  26. Mukhopadhyay J, Pandit S (2012) Design of a nano-scale cmos inverter with symmetric switching characteristics using particle swarm optimization algorithm. In: IEEE 2nd annual international conference on innovative techno-management solutions for social sector (IEMCON 2012), India 17–18, January 2012

  27. Karaboga N (2005) Digital IIR filter design using differential evolution algorithm. EURASIP J Appl Signal Process Hindwai Publ Corp 200:1269–1276 (article ID 8)

    Article  MATH  Google Scholar 

  28. Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. J Frankl Inst 346:328–348

    Article  MathSciNet  MATH  Google Scholar 

  29. Kang S-M, Leblebici Y (2003) CMOS digital integrated circuits analysis and design. TMH, India

    Google Scholar 

  30. DeMassa TA, Ciccone Z (1996) Digital integrated circuits. Wiley, New York

    Google Scholar 

  31. Walpole RE, Myer RH (1978) Probability and statistics for engineers and scientists. Macmillan, New York

    Google Scholar 

  32. Hardel RG, Mandal D, Ghoshal SP, Kar R (2012) Minimization of side lobe of optimized uniformly spaced and non-uniform excited time modulated linear antenna arrays using genetic algorithm. Swarm Evol Memet Comput Lect Notes Comput Sci 7677:451–458

    Article  Google Scholar 

  33. Garg H, Sharma SP (2013) Multi-objective reliability-redundancy allocation problem using particle swarm optimization. Comput Ind Eng 64(1):247–255

    Article  Google Scholar 

  34. Garg H (2015) An efficient biogeography based optimization algorithm for solving reliability optimization problems. Swarm Evolut Comput 24:1–10

    Article  Google Scholar 

  35. Garg H, Rani M, Sharma SP (2014) An approach for analyzing the reliability of industrial systems using soft computing based technique. Expert Syst Appl 41(2):489–501

    Article  Google Scholar 

  36. Garg H, Rani M, Sharma SP, Vishwakarma Y (2014) Intuitionistic fuzzy optimization technique for solving multi-objective reliability optimization problems in interval environment. Expert Syst Appl 41(7):3157–3167

    Article  Google Scholar 

  37. Garg H (2014) Solving structural engineering design optimization problems using an artificial bee colony algorithm. J Ind Manag Optim 10(3):777–794

    Article  MathSciNet  MATH  Google Scholar 

  38. Garg H (2014) A Hybrid GA-GSA algorithm for optimizing the performance of an industrial system by utilizing uncertain data. In: Vasant P (ed) IGI global, USA, Ch. 20, pp 620–654

  39. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  40. Ammu PK, Sivakumar KC, Rejimoan R (2013) Biogeography-based optimization—a survey. Int J Electron Comput Sci Eng 2(1):154–160

    Google Scholar 

  41. Murugan R, Mohan MR (2012) Modified artificial bee colony algorithm for solving economic dispatch problem. ARPN J Eng Appl Sci 7(10):1353–1366

    Google Scholar 

  42. Yang X-S, Deb S (2009) Cuckoo search via Levy flights. In: Proceedings of World congress on nature and biologically inspired computing (NaBIC 2009), December 2009, India. IEEE Publications, USA, pp 210–214

  43. Valian E, Mohanna S, Tavakoli S (2011) Improved Cuckoo search algorithm for feedforward neural network training. Int J Artif Intell Appl (IJAIA) 2(3):36–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, B.P., Kar, R., Mandal, D. et al. PSO with aging leader and challengers for optimal design of high speed symmetric switching CMOS inverter. Int. J. Mach. Learn. & Cyber. 8, 1403–1422 (2017). https://doi.org/10.1007/s13042-016-0517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0517-z

Keywords

Navigation