Skip to main content
Log in

Local mean representation based classifier and its applications for data classification

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Data classification is a fundamental problem in many research areas. This paper proposes a novel classifier, namely local mean representation based classifier (LMRC), for data classification. Based on the concept that neighboring samples should have most similar properties and for a testing sample, the similar properties should be concentrated on the mean of its intra-class nearest neighbors, LMRC represents the testing sample as a linear combination of its all local class means and assigns the testing sample to the class associating with the biggest item of the linear combination coefficient vector. LMRC is easy to employ with a least squares estimator, and it needs not to tune any parameter and could explore the local neighborhood relationship between samples to enhance the classification performance. Furthermore, to deal with the nonlinear problems, we extend the linear LMRC to its kernel version called kernel LMRC (KLMRC). Experiments on some benchmark datasets validate the superiority of the proposed two methods over other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xia Z, Wang X, Zhang L, Qin Z (2016) A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inf Forensics Secur. doi:10.1109/TIFS20162590944

    Google Scholar 

  2. Yuan C, Sun X, Rui L (2016) Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun 13(7):60–65

    Article  Google Scholar 

  3. Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295:395–406

    Article  Google Scholar 

  4. Zheng Y, Byeungwoo J, Xu D, Wu Q, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):4024–4028

    Google Scholar 

  5. Gu B, Sheng V, Wang Z, Ho D, Osman S, Li S (2015) Incremental learning for ν-support vector regression, neural networks. 67(C):140–150

  6. Gu B, Sheng V, Tay K, Romano W, Li S (2014) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416

    Article  MathSciNet  Google Scholar 

  7. Gu B, Sheng V (2016) A robust regularization path algorithm for ν-support vector classification. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2527796

    Google Scholar 

  8. Gu B, Sun X, Sheng VS (2016) Structural minimax probability machine. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2544779

    Google Scholar 

  9. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  MATH  Google Scholar 

  10. Gonzalez RC, Woods RE (1997) Digital image processing. Addison Wesley

  11. Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley

  12. Mitani Y, Hamamoto Y (2006) A local mean-based nonparametric classifier. Pattern Recogn Lett 27(10):1151–1159

    Article  Google Scholar 

  13. Xu J, Yang J (2011) Mean representation based classifier with its applications. Electron Lett 47(18):1024–1026

    Article  Google Scholar 

  14. Lai Z, Xu Y, Chen Q, Yang J, Zhang D (2014) Multilinear sparse principal component analysis. IEEE Trans Neural Netw Learn Syst 25(10):1942–1950

    Article  Google Scholar 

  15. Lai Z, Wong W, Xu Y (2014) Sparse alignment for robust tensor learning. IEEE Trans Neural Netw Learn Syst 25(10):1779–1792

    Article  Google Scholar 

  16. Lai Z, Xu Y, Jin Z, Zhang D (2014) Human gait recognition via sparse discriminant projection learning. IEEE Trans Circuits Syst Video Technol 24(10):1651–1662

    Article  Google Scholar 

  17. Yang M, Zhu P, Liu F, Shen L (2015) Joint representation and pattern learning for robust face recognition. Neurocomputing 168:70–80

    Article  Google Scholar 

  18. Shi X, Guo Z, Lai Z (2014) Face recognition by sparse discriminant analysis via joint L2,1-norm minimization. Pattern Recogn 47(7):2447–2453

    Article  Google Scholar 

  19. Lai Z, Wong W, Xu Y, Yang J, Zhang D (2015) Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans Neural Netw Learn Syst 27(4):723–735

    Article  MathSciNet  Google Scholar 

  20. Lu Y, Lai Z, Xu Y, Li X (2016) Low-rank preserving projections. IEEE Trans Cybern 46(8):1900–1913

    Article  Google Scholar 

  21. Wright J, Yang AY, Ganesh A, Sastry S, Ma Y (2008) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  22. Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Article  Google Scholar 

  23. Yang W, Wang Z, Yin J, Sun C, Ricanek K (2013) Image classification using kernel collaborative representation with regularized least square. Appl Math Comput 222(4):13–28

    MathSciNet  MATH  Google Scholar 

  24. Adini Y, Moses Y, Ullman S (1997) Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans Pattern Anal Mach Intell 19(7):721–732

    Article  Google Scholar 

  25. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  26. Huang P, Yang Z, Chen C (2015) Fuzzy local discriminant embedding for image feature extraction. Comput Electr Eng 46:231–240

    Article  Google Scholar 

  27. Zhu P, Hu Q, Zuo W, Yang M (2014) Multi-granularity distance metric learning via neighborhood granule margin maximization. Inf Sci 282:321–331

    Article  Google Scholar 

  28. Brown D, Li H, Gao Y (2012) Locality-regularized linear regression for face recognition. In: Proceedings of 2012 21st International Conference on Pattern Recognition (ICPR), pp 1586–1589

  29. Yang W, Ricanek K, Shen F (2014) Image classification using local linear regression. Neural Comput Appl 25(7–8):1913–1920

    Article  Google Scholar 

  30. Huang P, Gao G (2015) Local similarity preserving projections for face recognition. Int J Electron Commun (AEÜ) 69(11):1724–1732

    Article  Google Scholar 

  31. Guan N, Tao D, Luo Z, Yuan B (2011) Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Trans Image Process 20(7):2030–2048

    Article  MathSciNet  MATH  Google Scholar 

  32. Kwak N (2013) Nonlinear projection trick in kernel methods: an alternative to the kernel trick. IEEE Trans Neural Netw Learn Syst 24(12):2113–2119

    Article  Google Scholar 

  33. Seber GAF (2003) Linear regression analysis. Wiley Interscience

  34. Ryan TP (1997) Modern regression methods, Wiley Interscience

  35. http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

  36. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  37. http://www4.comp.polyu.edu.hk/~biometrics/

  38. Martinez AM, Benavente R (1998) The AR face database. CVC Technical Report #24

  39. http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html

  40. http://www.ri.cmu.edu/research_project_detail.html?project_id=418

  41. Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (Grant Nos. 61503195 and 61502245), the China Postdoctoral Science Foundation (Grant Nos. 2015M571786 and 2016M600433), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20150849 and BK20161580), a Project funded by the PAPD and CICAEET, and Project supported by the Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Nanjing University of Science and Technology) (Grant No. 30916014107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Qian, C., Yang, G. et al. Local mean representation based classifier and its applications for data classification. Int. J. Mach. Learn. & Cyber. 9, 969–978 (2018). https://doi.org/10.1007/s13042-016-0621-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0621-0

Keywords

Navigation