Abstract
This paper considers synchronization between two fractional-order neural networks (FONNs). To handle the case of full/under-actuation, i.e. the dimension of the synchronization controller is equal to or less than that of the FONNs, a novel fractional-order integral sliding surface is designed, and the feasibility of the proposed approach is shown by solving two linear matrix inequalities. Then, based on the fractional Lyapunov stability criterion, a fractional-order sliding mode controller equipped with fractional-order adaptation laws is constructed to guarantee the synchronization error converging to an arbitrary small region of the origin. The effectiveness of the proposed control method is verified by two simulation examples.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198. Academic press
Shen J, Lam J (2014) Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica 50(2):547–551
Aguila-Camacho N, Duarte-Mermoud MA, Gallegos JA (2014) Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul 19(9):2951–2957
Bouzeriba A, Boulkroune A, Bouden T (2016) Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Int J Mach Learn Cybern 5(7):893–908
Chen L, Wu R, He Y, Yin L (2015) Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties. Appl Math Comput 257:274–284
Duarte-Mermoud MA, Aguila-Camacho N, Gallegos JA, Castro-Linares R (2015) Using general quadratic lyapunov functions to prove lyapunov uniform stability for fractional order systems. Commun Nonlinear Sci Numer Simul 22(1):650–659
Wu H, Wang L, Wang Y, Niu P, Fang B (2016) Global mittag-leffler projective synchronization for fractional-order neural networks: an lmi-based approach. Adv Differ Equ 2016(1):1–18
Wu H, Zhang X, Xue S, Wang L, Wang Y (2016) Lmi conditions to global mittag-leffler stability of fractional-order neural networks with impulses. Neurocomputing 193:148–154
Liu H, Li S, Cao J, Li G, Alsaedi A, Alsaadi FE (2017) Adaptive fuzzy prescribed performance controller design for a class of uncertain fractional-order nonlinear systems with external disturbances. Neurocomputing 219:422–430
Liu H, Li SG, Sun YG, Wang HX (2015) Adaptive fuzzy synchronization for uncertain fractional-order chaotic systems with unknown non-symmetrical control gain. Acta Physica Sinaca 64(7):070503
Liu H, Li S-G, Sun Y-G, Wang H-X (2015) Prescribed performance synchronization for fractional-order chaotic systems. Chin Phys B 24(9):090505
Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer
Liu H, Pan Y, Li S, Chen Y. Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems. doi:10.1109/TSMC.2016.2640950
Liu H, Li S, Wang H, Huo Y, Luo J (2015) Adaptive synchronization for a class of uncertain fractional-order neural networks. Entropy 17(10):7185–7200
Yu J, Hu C, Jiang H (2012) \(\alpha\)-stability and \(\alpha\)-synchronization for fractional-order neural networks. Neural Netw 35:82–87
Wu H, Zhang X, Li R, Yao R (2015) Adaptive exponential synchronization of delayed cohen-grossberg neural networks with discontinuous activations. Int J Mach Learn Cybern 6(2):253–263
Chen J, Zeng Z, Jiang P (2014) Global mittag-leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8
Bao H-B, Cao J-D (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9
Wang F, Yang Y, Hu M (2015) Asymptotic stability of delayed fractional-order neural networks with impulsive effects. Neurocomputing 154:239–244
Chen L, Wu R, Cao J, Liu J-B (2015) Stability and synchronization of memristor-based fractional-order delayed neural networks. Neural Netw 71:37–44
Wu H, Li R, Yao R, Zhang X (2015) Weak, modified and function projective synchronization of chaotic memristive neural networks with time delays. Neurocomputing 149:667–676
Ding Z, Shen Y, Wang L (2016) Global mittag-leffler synchronization of fractional-order neural networks with discontinuous activations. Neural Netw 73:77–85
Wu H, Li R, Zhang X, Yao R (2015) Adaptive finite-time complete periodic synchronization of memristive neural networks with time delays. Neural Process Lett 42(3):563–583
Velmurugan G, Rakkiyappan R, Cao J (2016) Finite-time synchronization of fractional-order memristor-based neural networks with time delays. Neural Netw 73:36–46
Wu R, Lu Y, Chen L (2015) Finite-time stability of fractional delayed neural networks. Neurocomputing 149:700–707
Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL (2008) Fractional differentiation by neocortical pyramidal neurons. Nature Neurosci 11(11):1335–1342
Stamova I (2014) Global mittag-leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn 77(4):1251–1260
He Q, Liu D, Wu H, Ding S (2014) Robust exponential stability analysis for interval cohen-grossberg type bam neural networks with mixed time delays. Int J Mach Learn Cybern 5(1):23–38
Aghababa MP (2012) Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn 69(1–2):247–261
Rakkiyappan R, Cao J, Velmurugan G (2015) Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst 26(1):84–97
Wang H, Yu Y, Wen G, Zhang S, Yu J (2015) Global stability analysis of fractional-order hopfield neural networks with time delay. Neurocomputing 154:15–23
Xiao M, Zheng WX, Jiang G, Cao J (2015) Undamped oscillations generated by hopf bifurcations in fractional-order recurrent neural networks with caputo derivative. IEEE Trans Neural Netw Learn Syst 26(12):3201–3214
Bao H, Park JH, Cao J (2015) Adaptive synchronization of fractional-order memristor-based neural networks with time delay. Nonlinear Dyn 82(3):1343–1354
Wu A, Zeng Z. Global mittag-leffler stabilization of fractional-order memristive neural networks. IEEE Transactions on Neural Networks and Learning Systems. doi: 10.1109/TNNLS.2015.2506738
Ding Z, Shen Y. Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Networks. doi: 10.1016/j.neunet.2016.01.006
Wu H, Zhang X, Xue S, Niu P. Quasi-uniform stability of caputo-type fractional-order neural networks with mixed delay. International Journal of Machine Learning and Cybernetics. doi: 10.1007/s13042-016-0523-1
Levant A (1993) Sliding order and sliding accuracy in sliding mode control. Int J Control 58(6):1247–1263
Utkin V, Guldner J, Shi J (2009) Sliding mode control in electro-mechanical systems, vol. 34. CRC press
Goyal V, Deolia VK, Sharma TN (2015) Robust sliding mode control for nonlinear discrete-time delayed systems based on neural network. Intell Control Autom 6(1):75
Pan Y, Yu H (2016) Composite learning from adaptive dynamic surface control 61(9):2603–2609
Karimi HR (2012) A sliding mode approach to \(h_\infty\) synchronization of master-slave time-delay systems with markovian jumping parameters and nonlinear uncertainties. J Franklin Insti 349(4):1480–1496
Pan Y, Yu H (2015) Dynamic surface control via singular perturbation analysis. Automatica 57:29–33
Pan Y, Sun T, Yu H (2016) Composite adaptive dynamic surface control using online recorded data. Int J Robust Nonlinear Control 26(18):3921–3936
Yang Y-S, Chang J-F, Liao T-L, Yan J-J (2009) Robust synchronization of fractional chaotic systems via adaptive sliding mode control. Int J Nonlinear Sci Numerical Simul 10(9):1237–1244
Tavazoei MS, Haeri M (2008) Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A Stat Mech Appl 387(1):57–70
Pisano A, Rapaić M, Jeličić Z, Usai E (2010) Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics. Int J Robust Nonlinear Control 20(18):2045–2056
Gao Z, Liao X (2013) Integral sliding mode control for fractional-order systems with mismatched uncertainties. Nonlinear Dyn 72(1–2):27–35
Mohadeszadeh M, Delavari H (2015)Synchronization of fractional-order hyper-chaotic systems based on a new adaptive sliding mode control. International Journal of Dynamics and Control, pp 1–11
Djeghali N, Djennoune S, Bettayeb M, Ghanes M, Barbot J-P. Observation and sliding mode observer for nonlinear fractional-order system with unknown input.ISA Transactions. doi:10.1016/j.isatra.2016.02.015
Mobayen S (2015) Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties. Complexity 21(2):239–244
Chen L, Wu R, He Y, Chai Y (2015) Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances. Nonlinear Dyn 80(1–2):51–58
Balasubramaniam P, Muthukumar P, Ratnavelu K (2015) Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlinear Dyn 80(1–2):249–267
Jakovljević B, Pisano A, Rapaić M, Usai E (2015) On the sliding-mode control of fractional-order nonlinear uncertain dynamics. Int J Robust Nonlinear Control 26(4):782–798
Ke Z, Zhi-Hui W, Li-Ke G, Yue S, Tie-Dong M (2015) Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance. Chin Phys B 24(3):030504
Corradini ML, Giambò R, Pettinari S (2015) On the adoption of a fractional-order sliding surface for the robust control of integer-order lti plants. Automatica 51:364–371
Trigeassou J-C, Maamri N, Sabatier J, Oustaloup A (2011) A lyapunov approach to the stability of fractional differential equations. Signal Process 91(3):437–445
Li Y, Chen Y, Podlubny I (2009) Mittag-leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8):1965–1969
Yu J, Hu C, Jiang H, Fan X (2014) Projective synchronization for fractional neural networks. Neural Netw 49:87–95
Zhou S, Li H, Zhu Z (2008) Chaos control and synchronization in a fractional neuron network system. Chaos, Solitons Fractals 36(4):973–984
Roohi M, Aghababa MP, Haghighi AR (2015) Switching adaptive controllers to control fractional-order complex systems with unknown structure and input nonlinearities. Complexity 21(2):211–223
Sutha S, Lakshmi P, Sankaranarayanan S (2015) Fractional-order sliding mode controller design for a modified quadruple tank process via multi-level switching. Comput Electr Eng 45:10–21
Aghababa MP (2015) A fractional sliding mode for finite-time control scheme with application to stabilization of electrostatic and electromechanical transducers. Appl Math Model 39(20):6103–6113
Binazadeh T, Shafiei M (2013) Output tracking of uncertain fractional-order nonlinear systems via a novel fractional-order sliding mode approach. Mechatronics 23(7):888–892
Pashaei S, Badamchizadeh M. A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances, ISA transactions, vol. 63, pp 39–48
Zhang B-L, Ma L, Han Q-L (2013) Sliding mode h\(_\infty\) control for offshore steel jacket platforms subject to nonlinear self-excited wave force and external disturbance. Nonlinear Anal Real World Appl 14(1):163–178
Acknowledgements
The authors are indebted to the anonymous reviewers’ valuable comments, which improved the presentation and quality of this paper. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11401243, 61403157), the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (Grant No. KJ2015A256), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201504002), the Foundation for Distinguished Young Talents in Higher Education of Anhui, China (Grant No. GXYQZD2016257), and the Innovation Funds of Graduate Programs of Shaanxi Normal University (Grant No. 2015CXB008).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, H., Pan, Y., Li, S. et al. Synchronization for fractional-order neural networks with full/under-actuation using fractional-order sliding mode control. Int. J. Mach. Learn. & Cyber. 9, 1219–1232 (2018). https://doi.org/10.1007/s13042-017-0646-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-017-0646-z