Abstract
Segmentation of the left ventricle (LV) from cardiac magnetic resonance imaging (MRI) images is an essential step for calculation of clinical indices such as stroke volume, ejection fraction. In this paper, a new automatic LV segmentation method combines a Hierarchical Extreme Learning Machine (H-ELM) and a new location method is developed. An H-ELM can achieve more compact and meaningful feature representations and learn the segmentation task from the ground truth. A new automatic LV location method is integrated to improve the accuracy of classification and reduce the cost of segmentation. Experimental results (including 30 cases, 10 cases for training, 20 cases for testing) show that the mean absolute deviation of images segmented by our proposed method is about 67.9, 81.3 and 98.7% of those images segmented by the level set, the SVM and Hu’s method, respectively. The mean maximum absolute deviation of images segmented by our proposed method is about 63.5, 77.3 and 98.0% of those images segmented by the level set, the SVM and Hu’s method, respectively. The mean dice similarity coefficient of images segmented by our proposed method is about 13.7, 9.3 and 0.5% higher than that of those images segmented by the level set, the SVM and Hu’s method, respectively. The mean speed of our proposed method is about 38.3, 6.7 and 23.8 times faster than that of the level set, the SVM and Hu’s method, respectively. The standard deviation of our proposed method is the lowest among four methods. The results validate that our proposed method is efficient and satisfactory for the LV segmentation.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
World Health Organization (2014) Global status report on noncommunicable diseases 2014. http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed 5 April 2016
Hu HF, Gao ZY, Liu LM et al (2014) Automatic segmentation of the left ventricle in cardiac MRI using local binary fitting model and dynamic programming techniques. PLoS One 9:e114760–e114760. doi:10.1371/journal.pone.0114760
Frangi AF, Niessen WJ, Viergever MA (2001) Three-dimension modeling for functional analysis of cardiac images: a review. IEEE Trans Med Imaging 20:2–25. doi:10.1109/42.906421
Avendi MR, Kheradvar A, Jafarkhani H (2016) A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal 30:108–19. doi:10.1016/j.media.2016.01.005
Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15:169–84. doi:10.1016/j.media.2010.12.004.15
Queir S, Barbosa D, Heyde B et al (2014) Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal 18:1115–1131. doi:10.1016/j.media.2014.06.001
Tavakoli V, Amini AA (2013) A survey of shaped-based registration and segmentation techniques for cardiac images. Comput Vis Image Underst 117:966–989. doi:10.1016/j.cviu.2012.11.017
Cootes TF, Taylor CJ, Cooper DH et al (1995) Active shape models-their training and application. Comput Vis Image Und 61:38–59. doi:10.1006/cviu.1995.1004
Georgescu B, Zhou XS, Comaniciu D et al (2005) Database-guided segmentation of anatomical structures with complex appearance. IEEE Comput Soc Conf Comput Vis Pattern Recognit (CVPR’05) 2:429–436. doi:10.1109/CVPR.2005.119
Zheng Y, Barbu A, Georgescu B et al (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27:1668–1681. doi:10.1109/TMI.2008.2004421
Ngo TA, Lu Z, Carneiro G (2016) Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal 35:159–71. doi:10.1016/j.media.2016.05.009
Zhao YH, Wang GR, Zhang X et al (2014) Learning phenotype structure using sequence model. IEEE Trans Knowl Data Eng 26:667–681. doi:10.1109/TKDE.2013.31
Tang J, Deng C, Huang GB (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27:809–821. doi:10.1109/TNNLS.2015.2 424995
Huang GB (2014) An insight into extreme learning machines: random neurons, random features and kernels. Cognit Comput 6:376–390. doi:10.1007/s12559-014-9255-2
Huang GB, Zhou H, Ding X et al (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42:513–529. doi:10.1109/TSMC B. 2011.2168604
Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2:107–122. doi:10.1007/s13042-011-0019-y
Miche Y, Sorjamaa A, Bas P et al (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21:158–162. doi:10.1109/TNN.2009.2036259
Soria-Olivas E, Gomez-Sanchis J, Martin JD et al (2011) BELM: Bayesian extreme learning machine. IEEE Trans Neural Netw 22:505–509. doi:10.1109/TNN.2010.2103956
Wang LJ, Pei MC, Codella NC et al (2015) Left ventricle: fully automated segmentation based on spatiotemporal continuity and myocardium information in cine cardiac magnetic resonance imaging (LV-FAST). Biomed Res Int 2015:1–9. doi:10.1155/2015/367583
Lee HY, Codella NC, Cham MD et al (2010) Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI. IEEE Trans Biomed Eng 57:905–13. doi:10.1109/TBME.2009.2014545
Geiger D, Gupta A, Costa LA et al (1995) Dynamic programming for detecting, tracking and matching deformable contours. IEEE Trans Pattern Anal Mach Intell 19:294–302. doi:10.1109/ 34.368194
Lalande A, Legrand LP, Walker PM et al (1999) Automatic detection of left ventricular conours from cardiac cine magnetic resonance imaging using fuzzy logic. Invest Radiol 34:211–7. doi:10.1016/S0921-4534(98)00004-5
Zmc M, van der Geest RJ, Swingen C et al (2006) Time continuous tracking and segmentation of cardiovascular magnetic resonance images using multidimensional dynamic programming. Invest Radiol 41:52–62. doi:10.1097/01.rli.0000194070.88432.24
Yeh JY, Fu JC, Wu CC et al (2005) Myocardial border detection by brand-and-bound dynamic programming in magnetic resonance images. Comput Methods Programs Biomed 79:19–29. doi:10.1016/j.cmpb.2004.10.010
Lu Y, Radau P, Connelly K et al (2009) Automatic image-driven segmentation of left ventricle in cardiac cine MRI. Midas J 5528:339–347. doi:10.1002/jmri.21451
Otsu N (1975) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66. doi:10.1109/TSMC.1979.4310076
Hu H, Liu H, Gao Z et al (2013) Hybrid segmentation of left ventricle in cardiac MRI using Gaussian-mixture model and region restricted dynamic programming. Magn Reson Imaging 31:575–584. doi:10.1016/j.mri.2012.10.004
Xu J, Monaco JP, Madabhushi A (2010) Markov random field driven region-based active contour model (MaRACel): application to medical image segmentation. Med Image Comput Comput Assist Intervent (MICCAI) 13:197–204. doi:10.1007/978-3-642-15711-0_25
Reyna RA, Hernandez N, Esteve D et al (2000) Segmenting images with support vector machines. Int Conf Image Process 1:820–823. doi:10.1109/ICIP.2000.901085
Cousty J, Najman L, Couprie M et al (2010) Segmentation of 4D cardiac MRI: automated method based on spatio-temporal watershed cuts. Image Vision Comput 28:1229–1243. doi:10.1016/j.imavis.2010.01.001
Grosgeorge D, Petitjean C, Caudron J et al (2011) Automatic cardiac ventricle segmentation in MR images: a validation study. Int J Comput Assist Radiol Surg 6:573–581. doi:10.1007/s1154 8-010-0532-6
Kaus MR, Berg J, Weese J et al (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8:245–254. doi:10.1016/j.media.2004.06.015
Santarelli MF, Positano V, Michelassi C et al (2003) Automated cardiac MR image segmentation: theory and measurement evaluation. Med Eng Phys 25:149–159. doi:10.1016/S1350-4533(0 2)00144-3
Ammar M, Mahmoudi S, Chikh MA et al (2012) Endocardial border detection in cardiac magnetic resonance images using level set method. J Digit Imaging 25:294–306. doi:10.1007/s10278-011-9404-z
Chen T, Babb J, Kellman P et al (2008) Semiautomated segmentation of myocardial contours for fast strain analysis in cine displacement-encoded MRI. IEEE Trans Med Imaging 27:1084–1094. doi:10.1109/TMI.2008.918327
Li CM, Huang R, Ding Z et al (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20:2007–2016. doi:10.1109/TIP.2011.2146190
Pham VT, Tran TT, Shyu KK et al (2014) Multiphase B-spline level set and incremental shape priors with applications to segmentation and tracking of left ventricle in cardiac MR images. PLoS One 25:1967–1987. doi:10.1007/s00138-014-0626-1
OBrien SP, Ghita O, Whelan PF, (2011) A novel model-based 3D+ time left ventricular seg-mentation technique. IEEE Trans Med Imaging 30:461–474. doi:10.1109/TMI.2010.2086465
Pednekar A, Kurkure U, Muthupillai R et al (2006) Automated left ventricular segmentation in cardiac MRI. IEEE Trans Biomed Eng 53:1425–1428. doi:10.1109/TBME.2006.873684
Zhang HH, Wahle A, Johnson RK et al (2010) 4-D cardiac MR image analysis: left and right ventricular morphology and function. IEEE Trans Med Imaging 29:350–364. doi:10.1109/TMI.2009.2030799
Pluempitiwiriyawej C, Moura JM, Wu YJ et al (2005) New active contour scheme for cardiac MR image segmentation. IEEE Trans Med Imaging 24:593–603. doi:10.1109/TMI.2005.843740
Paragios N (2002) A variational approach for the segmentation of the left ventricle in cardiac image analysis. Int J Comput Vision 50:345–362. doi:10.1023/A:1020882509893
Edwards GJ, Taylor CJ, Cootes TF (1998) Interpreting face images using active appearance models. Int Conf Autom Face Gest Recogn 92:145–149. doi:10.1109/AFGR.1998.670965
Zambal S, Hladvka J, Bhler K (2006) Improving segmentation of the left ventricle using a two-component statistical model. Med Image Comput Comp Assist Intervent (MICCAI) 9:151–158. doi:10.1007/11866565_19
Lorenzo-Valds M, Sanchez-Ortiz GI, Mohiaddin R et al (2002) Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. Med Image Comput Comp Assist Intervent (MICCAI) 2488:642–650. doi:10.1007/3-540-45786-0_79
Lorenzo-Valds M, Sanchez-Ortiz GI, Elkington AG et al (2004) Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med Image Anal 8:255–265. doi:10.1007/978-3-540-39899-8_55
Ltjnen J, Kivist S, Koikkalainen J (2004) Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images. Med Image Anal 8:371–386. doi:10.1016/j. media.06.013
Zhao YH, Wang GR, Yin Y et al (2014) Improving ELM-based microarray data classification by diversified sequence features selection. Neural Comput Appl 27:155–166. doi:10.1007/s00521-014-1571-7
Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501. doi:10.1016/j.neucom.2005.12.126
Cao J, Zhang K, Luo M et al (2016) Extreme learning machine and adaptive sparse representation for image classification. Neural Netw 81:91–102. doi:10.1016/j.neunet.2016.06.001
Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17:879–892. doi:10.1109/TNN.2006.875977
Kasun LLC, Zhou H, Huang GB et al (2013) Representational learning with extreme learning machine for big data. IEEE Intell Syst 28:31–34. doi:10.1109/MIS.2013.140
Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2:183–202. doi:10.1137/080716542
Beck A, Teboulle M (2009) Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans Image Process 18:2419–2434. doi:10.1109/TIP.2009.2028250
Wan SY, William H (2003) Symmetric region growing. IEEE Trans Image Process 12:1007–1015. doi:10.1109/TIP.2003.815258
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 1:886–893. doi:10.1109/CVPR.2005.177
Kang C, Liao S, Xiang S, Pan C (2014) Kernel sparse representation with pixel-level and region-level local feature kernels for face recognition. Neurocomputing 133:141–152. doi:10.1016/j.neucom.2013.11.022
Ojala T, Pietikainen M, Maenpaa T (2002) Multi resolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987. doi:10.1109/TPAMI.2002.1017623
Zheng Q, Lu Z, Zhang M et al (2015) Automatic segmentation of myocardium from black-blood MR images using entropy and local neighborhood information. PloS One 10:e0120018. doi:10.1371/ journal.pone.0120018
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Nos. 61374015, 61202258), and the Fundamental Research Funds for the Central Universities (Nos. N130404016, N110219001).
Author information
Authors and Affiliations
Corresponding author
Additional information
Yang Luo and Benqiang Yang contributed equally to this work and are co-first authors.
Rights and permissions
About this article
Cite this article
Luo, Y., Yang, B., Xu, L. et al. Segmentation of the left ventricle in cardiac MRI using a hierarchical extreme learning machine model. Int. J. Mach. Learn. & Cyber. 9, 1741–1751 (2018). https://doi.org/10.1007/s13042-017-0678-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-017-0678-4